{"title":"包括大环内酯类和呋喃酮 C-30 在内的法定人数感应干扰剂以及外排泵抑制剂对铜绿假单胞菌亚硝化压力敏感性的影响。","authors":"Shin Suzuki, Yuji Morita, Shota Ishige, Kiyohiro Kai, Kenji Kawasaki, Kazuyuki Matsushita, Kohei Ogura, Tohru Miyoshi-Akiyama, Takeshi Shimizu","doi":"10.1099/mic.0.001464","DOIUrl":null,"url":null,"abstract":"<p><p>Long-term administration of certain macrolides is efficacious in patients with persistent pulmonary <i>Pseudomonas aeruginosa</i> infection, despite how limited the clinically achievable concentrations are, being far below their MICs. An increase in the sub-MIC of macrolide exposure-dependent sensitivity to nitrosative stress is a typical characteristic of <i>P. aeruginosa</i>. However, a few <i>P. aeruginosa</i> clinical isolates do not respond to sub-MIC of macrolide treatment. Therefore, we examined the effects of sub-MIC of erythromycin (EM) on the sensitivity to nitrosative stress together with an efflux pump inhibitor (EPI) phenylalanine arginyl β-naphthylamide (PAβN). The sensitivity to nitrosative stress increased, suggesting that the efflux pump was involved in inhibiting the sub-MIC of macrolide effect. Analysis using efflux pump-mutant <i>P. aeruginosa</i> revealed that MexAB-OprM, MexXY-OprM, and MexCD-OprJ are factors in reducing the sub-MIC of macrolide effect. Since macrolides interfere with quorum sensing (QS), we demonstrated that the QS-interfering agent furanone C-30 (C-30) producing greater sensitivity to nitric oxide (NO) stress than EM. The effect of C-30 was decreased by overproduction of MexAB-OprM. To investigate whether the increase in the QS-interfering agent exposure-dependent sensitivity to nitrosative stress is characteristic of <i>P. aeruginosa</i> clinical isolates, we examined the viability of <i>P. aeruginosa</i> treated with NO. Although treatment with EM could reduce cell viability, a high variability in EM effects was observed. Conversely, C-30 was highly effective at reducing cell viability. Treatment with both C-30 and PAβN was sufficiently effective against the remaining isolates. Therefore, the combination of a QS-interfering agent and an EPI could be effective in treating <i>P. aeruginosa</i> infections.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263931/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of quorum sensing-interfering agents, including macrolides and furanone C-30, and an efflux pump inhibitor on nitrosative stress sensitivity in <i>Pseudomonas aeruginosa</i>.\",\"authors\":\"Shin Suzuki, Yuji Morita, Shota Ishige, Kiyohiro Kai, Kenji Kawasaki, Kazuyuki Matsushita, Kohei Ogura, Tohru Miyoshi-Akiyama, Takeshi Shimizu\",\"doi\":\"10.1099/mic.0.001464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Long-term administration of certain macrolides is efficacious in patients with persistent pulmonary <i>Pseudomonas aeruginosa</i> infection, despite how limited the clinically achievable concentrations are, being far below their MICs. An increase in the sub-MIC of macrolide exposure-dependent sensitivity to nitrosative stress is a typical characteristic of <i>P. aeruginosa</i>. However, a few <i>P. aeruginosa</i> clinical isolates do not respond to sub-MIC of macrolide treatment. Therefore, we examined the effects of sub-MIC of erythromycin (EM) on the sensitivity to nitrosative stress together with an efflux pump inhibitor (EPI) phenylalanine arginyl β-naphthylamide (PAβN). The sensitivity to nitrosative stress increased, suggesting that the efflux pump was involved in inhibiting the sub-MIC of macrolide effect. Analysis using efflux pump-mutant <i>P. aeruginosa</i> revealed that MexAB-OprM, MexXY-OprM, and MexCD-OprJ are factors in reducing the sub-MIC of macrolide effect. Since macrolides interfere with quorum sensing (QS), we demonstrated that the QS-interfering agent furanone C-30 (C-30) producing greater sensitivity to nitric oxide (NO) stress than EM. The effect of C-30 was decreased by overproduction of MexAB-OprM. To investigate whether the increase in the QS-interfering agent exposure-dependent sensitivity to nitrosative stress is characteristic of <i>P. aeruginosa</i> clinical isolates, we examined the viability of <i>P. aeruginosa</i> treated with NO. Although treatment with EM could reduce cell viability, a high variability in EM effects was observed. Conversely, C-30 was highly effective at reducing cell viability. Treatment with both C-30 and PAβN was sufficiently effective against the remaining isolates. Therefore, the combination of a QS-interfering agent and an EPI could be effective in treating <i>P. aeruginosa</i> infections.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263931/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
长期服用某些大环内酯类药物对持续性肺铜绿假单胞菌感染患者有效,尽管临床上可达到的浓度非常有限,远远低于其 MIC。铜绿假单胞菌的一个典型特征就是对亚甲氧西林暴露依赖性大环内酯类药物的敏感性增加。然而,少数铜绿假单胞菌临床分离株对亚 MIC 大环内酯治疗无反应。因此,我们研究了亚微量红霉素(EM)与外排泵抑制剂(EPI)苯丙氨酸精氨酰 β-萘甲酰胺(PAβN)对亚硝化压力敏感性的影响。对亚硝酸应激的敏感性增加,这表明外排泵参与抑制了大环内酯类药物的亚 MIC 效应。利用外排泵突变型铜绿微囊藻进行的分析表明,MexAB-OprM、MexXY-OprM 和 MexCD-OprJ 是降低大环内酯类药物亚微量效应的因素。由于大环内酯干扰了法定人数感应(QS),我们证明 QS 干扰剂呋喃酮 C-30(C-30)比 EM 对一氧化氮(NO)压力更敏感。过量产生 MexAB-OprM 会降低 C-30 的作用。为了研究 QS 干扰剂暴露依赖性亚硝酸应激敏感性的增加是否是铜绿假单胞菌临床分离株的特征,我们检测了用 NO 处理的铜绿假单胞菌的活力。虽然用 EM 处理可降低细胞活力,但观察到 EM 的效果变化很大。相反,C-30 在降低细胞活力方面非常有效。同时使用 C-30 和 PAβN 对其余的分离物也有足够的效果。因此,将 QS 干扰剂和 EPI 结合使用可有效治疗铜绿假单胞菌感染。
Effects of quorum sensing-interfering agents, including macrolides and furanone C-30, and an efflux pump inhibitor on nitrosative stress sensitivity in Pseudomonas aeruginosa.
Long-term administration of certain macrolides is efficacious in patients with persistent pulmonary Pseudomonas aeruginosa infection, despite how limited the clinically achievable concentrations are, being far below their MICs. An increase in the sub-MIC of macrolide exposure-dependent sensitivity to nitrosative stress is a typical characteristic of P. aeruginosa. However, a few P. aeruginosa clinical isolates do not respond to sub-MIC of macrolide treatment. Therefore, we examined the effects of sub-MIC of erythromycin (EM) on the sensitivity to nitrosative stress together with an efflux pump inhibitor (EPI) phenylalanine arginyl β-naphthylamide (PAβN). The sensitivity to nitrosative stress increased, suggesting that the efflux pump was involved in inhibiting the sub-MIC of macrolide effect. Analysis using efflux pump-mutant P. aeruginosa revealed that MexAB-OprM, MexXY-OprM, and MexCD-OprJ are factors in reducing the sub-MIC of macrolide effect. Since macrolides interfere with quorum sensing (QS), we demonstrated that the QS-interfering agent furanone C-30 (C-30) producing greater sensitivity to nitric oxide (NO) stress than EM. The effect of C-30 was decreased by overproduction of MexAB-OprM. To investigate whether the increase in the QS-interfering agent exposure-dependent sensitivity to nitrosative stress is characteristic of P. aeruginosa clinical isolates, we examined the viability of P. aeruginosa treated with NO. Although treatment with EM could reduce cell viability, a high variability in EM effects was observed. Conversely, C-30 was highly effective at reducing cell viability. Treatment with both C-30 and PAβN was sufficiently effective against the remaining isolates. Therefore, the combination of a QS-interfering agent and an EPI could be effective in treating P. aeruginosa infections.