色差在视觉中的作用

IF 5 2区 医学 Q1 NEUROSCIENCES
Timothy J Gawne, Martin S Banks
{"title":"色差在视觉中的作用","authors":"Timothy J Gawne, Martin S Banks","doi":"10.1146/annurev-vision-101222-052228","DOIUrl":null,"url":null,"abstract":"<p><p>The study of biological optics would be complicated enough if light only came in a single wavelength. However, altering the wavelength (or distribution of wavelengths) of light has multiple effects on optics, including on diffraction, scattering (of various sorts), transmission through and reflection by various media, fluorescence, and waveguiding properties, among others. In this review, we consider just one wavelength-dependent optical effect: longitudinal chromatic aberration (LCA). All vertebrate eyes that have been tested have significant LCA, with shorter (bluer) wavelengths of light focusing closer to the front of the eye than longer (redder) wavelengths. We consider the role of LCA in the visual system in terms of both how it could degrade visual acuity and how biological systems make use of it.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Chromatic Aberration in Vision.\",\"authors\":\"Timothy J Gawne, Martin S Banks\",\"doi\":\"10.1146/annurev-vision-101222-052228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of biological optics would be complicated enough if light only came in a single wavelength. However, altering the wavelength (or distribution of wavelengths) of light has multiple effects on optics, including on diffraction, scattering (of various sorts), transmission through and reflection by various media, fluorescence, and waveguiding properties, among others. In this review, we consider just one wavelength-dependent optical effect: longitudinal chromatic aberration (LCA). All vertebrate eyes that have been tested have significant LCA, with shorter (bluer) wavelengths of light focusing closer to the front of the eye than longer (redder) wavelengths. We consider the role of LCA in the visual system in terms of both how it could degrade visual acuity and how biological systems make use of it.</p>\",\"PeriodicalId\":48658,\"journal\":{\"name\":\"Annual Review of Vision Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Vision Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-vision-101222-052228\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-101222-052228","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

如果光只有一种波长,生物光学的研究就会变得非常复杂。然而,改变光的波长(或波长分布)会对光学产生多种影响,包括衍射、散射(各种散射)、各种介质的透射和反射、荧光和波导特性等。在这篇综述中,我们只考虑一种与波长有关的光学效应:纵向色差(LCA)。所有经过测试的脊椎动物眼睛都有明显的纵向色差,波长较短(较蓝)的光比波长较长(较红)的光更靠近眼睛前部。我们将从 LCA 如何降低视觉敏锐度以及生物系统如何利用 LCA 这两个方面来探讨 LCA 在视觉系统中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role of Chromatic Aberration in Vision.

The study of biological optics would be complicated enough if light only came in a single wavelength. However, altering the wavelength (or distribution of wavelengths) of light has multiple effects on optics, including on diffraction, scattering (of various sorts), transmission through and reflection by various media, fluorescence, and waveguiding properties, among others. In this review, we consider just one wavelength-dependent optical effect: longitudinal chromatic aberration (LCA). All vertebrate eyes that have been tested have significant LCA, with shorter (bluer) wavelengths of light focusing closer to the front of the eye than longer (redder) wavelengths. We consider the role of LCA in the visual system in terms of both how it could degrade visual acuity and how biological systems make use of it.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Vision Science
Annual Review of Vision Science Medicine-Ophthalmology
CiteScore
11.10
自引率
1.70%
发文量
19
期刊介绍: The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信