{"title":"色差在视觉中的作用","authors":"Timothy J Gawne, Martin S Banks","doi":"10.1146/annurev-vision-101222-052228","DOIUrl":null,"url":null,"abstract":"<p><p>The study of biological optics would be complicated enough if light only came in a single wavelength. However, altering the wavelength (or distribution of wavelengths) of light has multiple effects on optics, including on diffraction, scattering (of various sorts), transmission through and reflection by various media, fluorescence, and waveguiding properties, among others. In this review, we consider just one wavelength-dependent optical effect: longitudinal chromatic aberration (LCA). All vertebrate eyes that have been tested have significant LCA, with shorter (bluer) wavelengths of light focusing closer to the front of the eye than longer (redder) wavelengths. We consider the role of LCA in the visual system in terms of both how it could degrade visual acuity and how biological systems make use of it.</p>","PeriodicalId":48658,"journal":{"name":"Annual Review of Vision Science","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Chromatic Aberration in Vision.\",\"authors\":\"Timothy J Gawne, Martin S Banks\",\"doi\":\"10.1146/annurev-vision-101222-052228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of biological optics would be complicated enough if light only came in a single wavelength. However, altering the wavelength (or distribution of wavelengths) of light has multiple effects on optics, including on diffraction, scattering (of various sorts), transmission through and reflection by various media, fluorescence, and waveguiding properties, among others. In this review, we consider just one wavelength-dependent optical effect: longitudinal chromatic aberration (LCA). All vertebrate eyes that have been tested have significant LCA, with shorter (bluer) wavelengths of light focusing closer to the front of the eye than longer (redder) wavelengths. We consider the role of LCA in the visual system in terms of both how it could degrade visual acuity and how biological systems make use of it.</p>\",\"PeriodicalId\":48658,\"journal\":{\"name\":\"Annual Review of Vision Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Vision Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-vision-101222-052228\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Vision Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-vision-101222-052228","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The study of biological optics would be complicated enough if light only came in a single wavelength. However, altering the wavelength (or distribution of wavelengths) of light has multiple effects on optics, including on diffraction, scattering (of various sorts), transmission through and reflection by various media, fluorescence, and waveguiding properties, among others. In this review, we consider just one wavelength-dependent optical effect: longitudinal chromatic aberration (LCA). All vertebrate eyes that have been tested have significant LCA, with shorter (bluer) wavelengths of light focusing closer to the front of the eye than longer (redder) wavelengths. We consider the role of LCA in the visual system in terms of both how it could degrade visual acuity and how biological systems make use of it.
期刊介绍:
The Annual Review of Vision Science reviews progress in the visual sciences, a cross-cutting set of disciplines which intersect psychology, neuroscience, computer science, cell biology and genetics, and clinical medicine. The journal covers a broad range of topics and techniques, including optics, retina, central visual processing, visual perception, eye movements, visual development, vision models, computer vision, and the mechanisms of visual disease, dysfunction, and sight restoration. The study of vision is central to progress in many areas of science, and this new journal will explore and expose the connections that link it to biology, behavior, computation, engineering, and medicine.