[未来气候情景下甘南草原土壤有机碳密度时空模拟与预测]。

Q2 Environmental Science
Zhao Li, Mei-Ling Zhang, Rui-Qi Zhang, Jing Tian, Chen Wang
{"title":"[未来气候情景下甘南草原土壤有机碳密度时空模拟与预测]。","authors":"Zhao Li, Mei-Ling Zhang, Rui-Qi Zhang, Jing Tian, Chen Wang","doi":"10.13227/j.hjkx.202307016","DOIUrl":null,"url":null,"abstract":"<p><p>To study the temporal and spatial distribution characteristics of soil organic carbon density in grassland and explore the relationship between organic carbon density and influencing factors is of great significance to the management and maintenance of grassland ecosystems in Gannan Autonomous Prefecture, which is conducive to realizing the goal of \"double carbon,\" promoting carbon sink, and mitigating climate change. Taking Gannan Tibetan Autonomous Prefecture of Gansu Province as the research object, based on data from two CMIP6 future climate scenarios (SSP126 and SSP585), the CENTURY model was used to simulate and predict the temporal and spatial changes in soil organic carbon density in grassland of Gannan during 2023-2100. The main conclusions were as follows:① From 2023 to 2100, total organic carbon density, slow organic carbon density, and inert organic carbon density all showed a downward trend, whereas active organic carbon density fluctuated first and then increased. Meanwhile, the total organic carbon density, active organic carbon density, slow organic carbon density, and inert organic carbon density under the SSP585 scenario were higher than those under the SSP126 scenario. ② Mann-Kendall mutation analysis showed that the abrupt change in the difference of soil total organic carbon density (Δsomtc) occurred in 2030. The abrupt change in the difference of soil active carbon density (Δsom1c) occurred in 2027. ③ During the study period, the average soil organic carbon density of Gannan grassland was 7 505.69 g·m<sup>-2</sup> under the SSP126 scenario and 7 551.87 g·m<sup>-2</sup> under the SSP585 scenario. Gannan grassland soil organic carbon density was higher in the west and lower in the east, and the coefficient of variation was relatively stable. ④ The results of partial correlation analysis showed that precipitation was positively correlated with soil organic carbon density, whereas temperature was significantly negatively correlated with soil organic carbon density under future climate scenarios. ⑤ The results of the Theil-Sen Median trend analysis and Mann-Kendall test showed that under the two climate scenarios, the soil organic carbon density in Gannan showed an overall downward trend, in which Luqu County showed the fastest downward trend and Dibe County showed the slowest.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Spatiotemporal Simulation and Prediction of Soil Organic Carbon Density in Gannan Grassland Under Future Climate Scenarios].\",\"authors\":\"Zhao Li, Mei-Ling Zhang, Rui-Qi Zhang, Jing Tian, Chen Wang\",\"doi\":\"10.13227/j.hjkx.202307016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To study the temporal and spatial distribution characteristics of soil organic carbon density in grassland and explore the relationship between organic carbon density and influencing factors is of great significance to the management and maintenance of grassland ecosystems in Gannan Autonomous Prefecture, which is conducive to realizing the goal of \\\"double carbon,\\\" promoting carbon sink, and mitigating climate change. Taking Gannan Tibetan Autonomous Prefecture of Gansu Province as the research object, based on data from two CMIP6 future climate scenarios (SSP126 and SSP585), the CENTURY model was used to simulate and predict the temporal and spatial changes in soil organic carbon density in grassland of Gannan during 2023-2100. The main conclusions were as follows:① From 2023 to 2100, total organic carbon density, slow organic carbon density, and inert organic carbon density all showed a downward trend, whereas active organic carbon density fluctuated first and then increased. Meanwhile, the total organic carbon density, active organic carbon density, slow organic carbon density, and inert organic carbon density under the SSP585 scenario were higher than those under the SSP126 scenario. ② Mann-Kendall mutation analysis showed that the abrupt change in the difference of soil total organic carbon density (Δsomtc) occurred in 2030. The abrupt change in the difference of soil active carbon density (Δsom1c) occurred in 2027. ③ During the study period, the average soil organic carbon density of Gannan grassland was 7 505.69 g·m<sup>-2</sup> under the SSP126 scenario and 7 551.87 g·m<sup>-2</sup> under the SSP585 scenario. Gannan grassland soil organic carbon density was higher in the west and lower in the east, and the coefficient of variation was relatively stable. ④ The results of partial correlation analysis showed that precipitation was positively correlated with soil organic carbon density, whereas temperature was significantly negatively correlated with soil organic carbon density under future climate scenarios. ⑤ The results of the Theil-Sen Median trend analysis and Mann-Kendall test showed that under the two climate scenarios, the soil organic carbon density in Gannan showed an overall downward trend, in which Luqu County showed the fastest downward trend and Dibe County showed the slowest.</p>\",\"PeriodicalId\":35937,\"journal\":{\"name\":\"Huanjing Kexue/Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Huanjing Kexue/Environmental Science\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13227/j.hjkx.202307016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Huanjing Kexue/Environmental Science","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202307016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

研究草地土壤有机碳密度的时空分布特征,探讨有机碳密度与影响因素的关系,对甘南藏族自治州草地生态系统的管理与维护具有重要意义,有利于实现 "双碳 "目标,促进碳汇,减缓气候变化。以甘肃省甘南藏族自治州为研究对象,基于两种CMIP6未来气候情景(SSP126和SSP585)的数据,利用CENTURY模型模拟并预测了2023-2100年甘南州草地土壤有机碳密度的时空变化。主要结论如下:①2023-2100 年,土壤总有机碳密度、慢速有机碳密度、惰性有机碳密度均呈下降趋势,活性有机碳密度先波动后上升。同时,SSP585 情景下的总有机碳密度、活性有机碳密度、慢速有机碳密度和惰性有机碳密度均高于 SSP126 情景。Mann-Kendall 突变分析表明,土壤总有机碳密度差值(Δsomtc)的突变发生在 2030 年。土壤有机碳密度差异(Δsom1c)的突变发生在 2027 年。研究期间,SSP126 情景下甘南草原土壤有机碳平均密度为 7 505.69 g-m-2,SSP585 情景下为 7 551.87 g-m-2。甘南草原土壤有机碳密度西部较高,东部较低,变异系数相对稳定。局部相关分析结果表明,在未来气候情景下,降水与土壤有机碳密度呈正相关,而温度与土壤有机碳密度呈显著负相关。Theil-Sen 中值趋势分析和 Mann-Kendall 检验结果表明,在两种气候情景下,甘南地区土壤有机碳密度总体呈下降趋势,其中碌曲县下降趋势最快,迭部县下降趋势最慢。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Spatiotemporal Simulation and Prediction of Soil Organic Carbon Density in Gannan Grassland Under Future Climate Scenarios].

To study the temporal and spatial distribution characteristics of soil organic carbon density in grassland and explore the relationship between organic carbon density and influencing factors is of great significance to the management and maintenance of grassland ecosystems in Gannan Autonomous Prefecture, which is conducive to realizing the goal of "double carbon," promoting carbon sink, and mitigating climate change. Taking Gannan Tibetan Autonomous Prefecture of Gansu Province as the research object, based on data from two CMIP6 future climate scenarios (SSP126 and SSP585), the CENTURY model was used to simulate and predict the temporal and spatial changes in soil organic carbon density in grassland of Gannan during 2023-2100. The main conclusions were as follows:① From 2023 to 2100, total organic carbon density, slow organic carbon density, and inert organic carbon density all showed a downward trend, whereas active organic carbon density fluctuated first and then increased. Meanwhile, the total organic carbon density, active organic carbon density, slow organic carbon density, and inert organic carbon density under the SSP585 scenario were higher than those under the SSP126 scenario. ② Mann-Kendall mutation analysis showed that the abrupt change in the difference of soil total organic carbon density (Δsomtc) occurred in 2030. The abrupt change in the difference of soil active carbon density (Δsom1c) occurred in 2027. ③ During the study period, the average soil organic carbon density of Gannan grassland was 7 505.69 g·m-2 under the SSP126 scenario and 7 551.87 g·m-2 under the SSP585 scenario. Gannan grassland soil organic carbon density was higher in the west and lower in the east, and the coefficient of variation was relatively stable. ④ The results of partial correlation analysis showed that precipitation was positively correlated with soil organic carbon density, whereas temperature was significantly negatively correlated with soil organic carbon density under future climate scenarios. ⑤ The results of the Theil-Sen Median trend analysis and Mann-Kendall test showed that under the two climate scenarios, the soil organic carbon density in Gannan showed an overall downward trend, in which Luqu County showed the fastest downward trend and Dibe County showed the slowest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Huanjing Kexue/Environmental Science
Huanjing Kexue/Environmental Science Environmental Science-Environmental Science (all)
CiteScore
4.40
自引率
0.00%
发文量
15329
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信