微塑料和苯并[a]芘对亚洲鲈鱼生长和功能基因表达的综合影响。

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ahmad Ghasemi , Ahmad Shadi
{"title":"微塑料和苯并[a]芘对亚洲鲈鱼生长和功能基因表达的综合影响。","authors":"Ahmad Ghasemi ,&nbsp;Ahmad Shadi","doi":"10.1016/j.cbpc.2024.109966","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are priority contaminants of marine environments. However, their combined toxic effects on aquatic organisms are still largely unclear. In this study, the toxicological effects of microplastics (MPs) and Benzo[<em>a</em>]pyrene (BaP), a representative PAH, on Asian sea bass <em>Lates calcarifer</em> was investigated. Juvenile Asian sea bass were exposed for 56 days to polyethylene MPs (0.1 and 1 mg/L) and BaP (20 and 80 μg/L) as single or combined environmental stressors. The effects of MPs and BaP exposure on fish were evaluated considering several biological indices such as growth and condition indices, the oxidative stress response in the liver, and the expression levels of genes related to the stress, immunomodulation, detoxification, and apoptosis. Exposure to MPs and BaP in single or combined experiments significantly (<em>P</em> &lt; 0.05) decreased fish growth, and altered body protein content and food conversion ratio (FCR), but greater magnitudes of changes was observed in the combined experimental group of BaP80 + MP1. The activities of liver antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) decreased; meanwhile, malondialdehyde (MDA) activity was dramatically enhanced (<em>P</em> &lt; 0.05). The combined groups with higher concentrations (BaP80+ MP1) caused more severe alterations in enzyme levels compared to the single exposure groups and lower concentrations. MDA was the most affected among the studied enzymes. The expression levels of functional genes involved in stress response (GPX, HSP70, HSP90), pro-inflammation (LYZ, IL-1β, IL-8, and TNF-α), and detoxification (CYP1A) displayed significant alterations as the result of exposure to MPs and BaP single and in combination. The transcription levels of functional genes were more affected in fish exposed to BaP at 80 ng/mL when combined with MPs at 1 mg/mL. Additionally, MPs and BaP heightened the expression of apoptotic-related genes (p53 and caspase-3) on day 7 of exposure in a dose-dependent synergetic manner (<em>P</em> &lt; 0.05). The results of this study demonstrate that exposure to MPs and BaP alone results in significant alterations in fish growth and condition factors, and could activate the stress response, stimulate the anti-oxidative defense system, immune transcriptomic response, and apoptosis in Asian sea bass; however, MPs can enhance the adverse effects of BaP on biological markers.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"283 ","pages":"Article 109966"},"PeriodicalIF":3.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined effects of microplastics and benzo[a]pyrene on Asian sea bass Lates calcarifer growth and expression of functional genes\",\"authors\":\"Ahmad Ghasemi ,&nbsp;Ahmad Shadi\",\"doi\":\"10.1016/j.cbpc.2024.109966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are priority contaminants of marine environments. However, their combined toxic effects on aquatic organisms are still largely unclear. In this study, the toxicological effects of microplastics (MPs) and Benzo[<em>a</em>]pyrene (BaP), a representative PAH, on Asian sea bass <em>Lates calcarifer</em> was investigated. Juvenile Asian sea bass were exposed for 56 days to polyethylene MPs (0.1 and 1 mg/L) and BaP (20 and 80 μg/L) as single or combined environmental stressors. The effects of MPs and BaP exposure on fish were evaluated considering several biological indices such as growth and condition indices, the oxidative stress response in the liver, and the expression levels of genes related to the stress, immunomodulation, detoxification, and apoptosis. Exposure to MPs and BaP in single or combined experiments significantly (<em>P</em> &lt; 0.05) decreased fish growth, and altered body protein content and food conversion ratio (FCR), but greater magnitudes of changes was observed in the combined experimental group of BaP80 + MP1. The activities of liver antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) decreased; meanwhile, malondialdehyde (MDA) activity was dramatically enhanced (<em>P</em> &lt; 0.05). The combined groups with higher concentrations (BaP80+ MP1) caused more severe alterations in enzyme levels compared to the single exposure groups and lower concentrations. MDA was the most affected among the studied enzymes. The expression levels of functional genes involved in stress response (GPX, HSP70, HSP90), pro-inflammation (LYZ, IL-1β, IL-8, and TNF-α), and detoxification (CYP1A) displayed significant alterations as the result of exposure to MPs and BaP single and in combination. The transcription levels of functional genes were more affected in fish exposed to BaP at 80 ng/mL when combined with MPs at 1 mg/mL. Additionally, MPs and BaP heightened the expression of apoptotic-related genes (p53 and caspase-3) on day 7 of exposure in a dose-dependent synergetic manner (<em>P</em> &lt; 0.05). The results of this study demonstrate that exposure to MPs and BaP alone results in significant alterations in fish growth and condition factors, and could activate the stress response, stimulate the anti-oxidative defense system, immune transcriptomic response, and apoptosis in Asian sea bass; however, MPs can enhance the adverse effects of BaP on biological markers.</p></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":\"283 \",\"pages\":\"Article 109966\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624001340\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624001340","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微塑料(MPs)和多环芳烃(PAHs)是海洋环境的主要污染物。然而,它们对水生生物的综合毒性影响在很大程度上仍不明确。本研究调查了微塑料(MPs)和代表性多环芳烃苯并[a]芘(BaP)对亚洲鲈鱼(Lates calcarifer)的毒理学影响。幼年亚洲鲈鱼在聚乙烯微塑料(0.1 和 1 mg/L)和苯并[a]芘(20 和 80 μg/L)作为单一或组合环境胁迫下暴露 56 天。评估暴露于 MPs 和 BaP 对鱼类的影响时考虑了几项生物指标,如生长和状态指数、肝脏中的氧化应激反应以及与应激、免疫调节、解毒和细胞凋亡有关的基因表达水平。在单一或联合实验中暴露于 MPs 和 BaP 都会显著(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combined effects of microplastics and benzo[a]pyrene on Asian sea bass Lates calcarifer growth and expression of functional genes

Combined effects of microplastics and benzo[a]pyrene on Asian sea bass Lates calcarifer growth and expression of functional genes

Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) are priority contaminants of marine environments. However, their combined toxic effects on aquatic organisms are still largely unclear. In this study, the toxicological effects of microplastics (MPs) and Benzo[a]pyrene (BaP), a representative PAH, on Asian sea bass Lates calcarifer was investigated. Juvenile Asian sea bass were exposed for 56 days to polyethylene MPs (0.1 and 1 mg/L) and BaP (20 and 80 μg/L) as single or combined environmental stressors. The effects of MPs and BaP exposure on fish were evaluated considering several biological indices such as growth and condition indices, the oxidative stress response in the liver, and the expression levels of genes related to the stress, immunomodulation, detoxification, and apoptosis. Exposure to MPs and BaP in single or combined experiments significantly (P < 0.05) decreased fish growth, and altered body protein content and food conversion ratio (FCR), but greater magnitudes of changes was observed in the combined experimental group of BaP80 + MP1. The activities of liver antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) decreased; meanwhile, malondialdehyde (MDA) activity was dramatically enhanced (P < 0.05). The combined groups with higher concentrations (BaP80+ MP1) caused more severe alterations in enzyme levels compared to the single exposure groups and lower concentrations. MDA was the most affected among the studied enzymes. The expression levels of functional genes involved in stress response (GPX, HSP70, HSP90), pro-inflammation (LYZ, IL-1β, IL-8, and TNF-α), and detoxification (CYP1A) displayed significant alterations as the result of exposure to MPs and BaP single and in combination. The transcription levels of functional genes were more affected in fish exposed to BaP at 80 ng/mL when combined with MPs at 1 mg/mL. Additionally, MPs and BaP heightened the expression of apoptotic-related genes (p53 and caspase-3) on day 7 of exposure in a dose-dependent synergetic manner (P < 0.05). The results of this study demonstrate that exposure to MPs and BaP alone results in significant alterations in fish growth and condition factors, and could activate the stress response, stimulate the anti-oxidative defense system, immune transcriptomic response, and apoptosis in Asian sea bass; however, MPs can enhance the adverse effects of BaP on biological markers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信