超高效凝胶吸附剂,吸附能力是活性炭的 1000 多倍

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Menghan Hu, Na Xie, Yujia Huang, Yikai Yu
{"title":"超高效凝胶吸附剂,吸附能力是活性炭的 1000 多倍","authors":"Menghan Hu, Na Xie, Yujia Huang, Yikai Yu","doi":"10.1038/s41545-024-00347-0","DOIUrl":null,"url":null,"abstract":"It was observed that a super-efficient gel adsorbent system (RRQG@CDC) could be obtained when a matrix material of polyquaternium gel with a flat distribution (RRQG) was loaded onto a skeleton material of cyclodextrin carbide (CDC). The results showed that the adsorption capacity of RRQG@CDC towards dyes was 1250 times higher than that of commonly used activated carbon, enabling highly efficient purification of dyeing wastewater through superior adsorption. In addition, RRQG@CDC demonstrated adaptability to a range of different pH values and salinity conditions, showing super-efficient adsorption abilities towards various types of dyes. Moreover, simulated scale-up tests confirmed the feasibility of this super-efficient adsorbent for practical engineering applications. An enhanced quasi-planar electrostatic adsorption mechanism model was established, which has changed the traditional understanding of adsorption mechanisms. Furthermore, the waste residues of RRQG@CDC, after dye adsorption, can be directly utilized as high-calorific fuels, showcasing the resourcefulness of these residues while eliminating the risk of secondary pollution. In conclusion, this study achieved a remarkably efficient and resource-based purification of dyeing wastewater by developing a highly effective adsorbent system.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-15"},"PeriodicalIF":10.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00347-0.pdf","citationCount":"0","resultStr":"{\"title\":\"A super-efficient gel adsorbent with over 1000 times the adsorption capacity of activated carbon\",\"authors\":\"Menghan Hu, Na Xie, Yujia Huang, Yikai Yu\",\"doi\":\"10.1038/s41545-024-00347-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It was observed that a super-efficient gel adsorbent system (RRQG@CDC) could be obtained when a matrix material of polyquaternium gel with a flat distribution (RRQG) was loaded onto a skeleton material of cyclodextrin carbide (CDC). The results showed that the adsorption capacity of RRQG@CDC towards dyes was 1250 times higher than that of commonly used activated carbon, enabling highly efficient purification of dyeing wastewater through superior adsorption. In addition, RRQG@CDC demonstrated adaptability to a range of different pH values and salinity conditions, showing super-efficient adsorption abilities towards various types of dyes. Moreover, simulated scale-up tests confirmed the feasibility of this super-efficient adsorbent for practical engineering applications. An enhanced quasi-planar electrostatic adsorption mechanism model was established, which has changed the traditional understanding of adsorption mechanisms. Furthermore, the waste residues of RRQG@CDC, after dye adsorption, can be directly utilized as high-calorific fuels, showcasing the resourcefulness of these residues while eliminating the risk of secondary pollution. In conclusion, this study achieved a remarkably efficient and resource-based purification of dyeing wastewater by developing a highly effective adsorbent system.\",\"PeriodicalId\":19375,\"journal\":{\"name\":\"npj Clean Water\",\"volume\":\" \",\"pages\":\"1-15\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41545-024-00347-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Clean Water\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.nature.com/articles/s41545-024-00347-0\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00347-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

研究发现,在环糊精碳化物(CDC)骨架材料上负载扁平分布的聚季铵盐凝胶(RRQG)基质材料,可获得超高效凝胶吸附剂系统(RRQG@CDC)。结果表明,RRQG@CDC 对染料的吸附能力是常用活性炭的 1250 倍,通过优异的吸附性能实现了对印染废水的高效净化。此外,RRQG@CDC 还能适应一系列不同的 pH 值和盐度条件,显示出对各种染料的超强吸附能力。此外,模拟放大试验证实了这种超高效吸附剂在实际工程应用中的可行性。建立的增强型准平面静电吸附机理模型改变了人们对吸附机理的传统认识。此外,RRQG@CDC吸附染料后的废渣可直接用作高热量燃料,体现了废渣的资源化,同时消除了二次污染的风险。总之,本研究通过开发一种高效的吸附剂系统,实现了染色废水的高效和资源化净化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A super-efficient gel adsorbent with over 1000 times the adsorption capacity of activated carbon

A super-efficient gel adsorbent with over 1000 times the adsorption capacity of activated carbon

A super-efficient gel adsorbent with over 1000 times the adsorption capacity of activated carbon
It was observed that a super-efficient gel adsorbent system (RRQG@CDC) could be obtained when a matrix material of polyquaternium gel with a flat distribution (RRQG) was loaded onto a skeleton material of cyclodextrin carbide (CDC). The results showed that the adsorption capacity of RRQG@CDC towards dyes was 1250 times higher than that of commonly used activated carbon, enabling highly efficient purification of dyeing wastewater through superior adsorption. In addition, RRQG@CDC demonstrated adaptability to a range of different pH values and salinity conditions, showing super-efficient adsorption abilities towards various types of dyes. Moreover, simulated scale-up tests confirmed the feasibility of this super-efficient adsorbent for practical engineering applications. An enhanced quasi-planar electrostatic adsorption mechanism model was established, which has changed the traditional understanding of adsorption mechanisms. Furthermore, the waste residues of RRQG@CDC, after dye adsorption, can be directly utilized as high-calorific fuels, showcasing the resourcefulness of these residues while eliminating the risk of secondary pollution. In conclusion, this study achieved a remarkably efficient and resource-based purification of dyeing wastewater by developing a highly effective adsorbent system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信