Min Xie, Yi Zhang, Xinyang Li, Jiayue Li, Xingyu Zou, Yiji Mao, Haixian Zhang
{"title":"利用三维 CT 扫描预测结直肠癌淋巴结转移的智能系统","authors":"Min Xie, Yi Zhang, Xinyang Li, Jiayue Li, Xingyu Zou, Yiji Mao, Haixian Zhang","doi":"10.1155/2024/7629441","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In colorectal cancer (CRC), accurately predicting lymph node metastasis (LNM) contributes to developing appropriate treatment plans and serves as the key to long-term survival of patients. In the clinical settings, preoperative LNM diagnosis in CRC predominantly depends on computed tomography (CT). Nevertheless, lymph nodes are small in size and difficult to identify on 3D CT scans, and CT-based diagnosis of metastatic lymph nodes is prone to a significant misdiagnosis rate and lacks consistency across clinicians. Currently, there is no automatic system available for LNM prediction in CRC via 3D CT scans. In addition, existing deep learning- (DL-) based lymph node detection models present low detection accuracy and high false-positive rates, and most existing DL-based lymph node metastasis prediction models mainly use tumor area characteristics but fail to adequately utilize lymph node information, thus not yielding satisfactory results. To tackle these issues, we propose an intelligent diagnosis system for this challenging task, mainly including a lymph node detection (LND) model and a lymph node metastasis prediction (LNMP) model. In detail, the LND model utilizes an encoder-decoder network to detect lymph nodes, and the LNMP model employs an innovative attention-based multiple instance learning (MIL) network. An instance-level self-attention feature enhancement module is designed to extract and augment lymph node features as a bag of instances. Furthermore, a bag-level MIL prediction module is employed to extract instance features and create a bag representation for the ultimate LNM prediction. As far as we know, the proposed intelligent system represents the pioneering method for addressing this complex clinical challenge. In experiments, our proposed intelligent system achieves the AUC of 75.4% and the accuracy of 73.9%, showcasing a significant enhancement compared to physicians specialising in CRC and highlighting its strong clinical applicability. The accessible code can be found at https://github.com/SCU-MI/IS-LNM.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2024 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7629441","citationCount":"0","resultStr":"{\"title\":\"An Intelligent System of Predicting Lymph Node Metastasis in Colorectal Cancer Using 3D CT Scans\",\"authors\":\"Min Xie, Yi Zhang, Xinyang Li, Jiayue Li, Xingyu Zou, Yiji Mao, Haixian Zhang\",\"doi\":\"10.1155/2024/7629441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In colorectal cancer (CRC), accurately predicting lymph node metastasis (LNM) contributes to developing appropriate treatment plans and serves as the key to long-term survival of patients. In the clinical settings, preoperative LNM diagnosis in CRC predominantly depends on computed tomography (CT). Nevertheless, lymph nodes are small in size and difficult to identify on 3D CT scans, and CT-based diagnosis of metastatic lymph nodes is prone to a significant misdiagnosis rate and lacks consistency across clinicians. Currently, there is no automatic system available for LNM prediction in CRC via 3D CT scans. In addition, existing deep learning- (DL-) based lymph node detection models present low detection accuracy and high false-positive rates, and most existing DL-based lymph node metastasis prediction models mainly use tumor area characteristics but fail to adequately utilize lymph node information, thus not yielding satisfactory results. To tackle these issues, we propose an intelligent diagnosis system for this challenging task, mainly including a lymph node detection (LND) model and a lymph node metastasis prediction (LNMP) model. In detail, the LND model utilizes an encoder-decoder network to detect lymph nodes, and the LNMP model employs an innovative attention-based multiple instance learning (MIL) network. An instance-level self-attention feature enhancement module is designed to extract and augment lymph node features as a bag of instances. Furthermore, a bag-level MIL prediction module is employed to extract instance features and create a bag representation for the ultimate LNM prediction. As far as we know, the proposed intelligent system represents the pioneering method for addressing this complex clinical challenge. In experiments, our proposed intelligent system achieves the AUC of 75.4% and the accuracy of 73.9%, showcasing a significant enhancement compared to physicians specialising in CRC and highlighting its strong clinical applicability. The accessible code can be found at https://github.com/SCU-MI/IS-LNM.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/7629441\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/7629441\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/7629441","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An Intelligent System of Predicting Lymph Node Metastasis in Colorectal Cancer Using 3D CT Scans
In colorectal cancer (CRC), accurately predicting lymph node metastasis (LNM) contributes to developing appropriate treatment plans and serves as the key to long-term survival of patients. In the clinical settings, preoperative LNM diagnosis in CRC predominantly depends on computed tomography (CT). Nevertheless, lymph nodes are small in size and difficult to identify on 3D CT scans, and CT-based diagnosis of metastatic lymph nodes is prone to a significant misdiagnosis rate and lacks consistency across clinicians. Currently, there is no automatic system available for LNM prediction in CRC via 3D CT scans. In addition, existing deep learning- (DL-) based lymph node detection models present low detection accuracy and high false-positive rates, and most existing DL-based lymph node metastasis prediction models mainly use tumor area characteristics but fail to adequately utilize lymph node information, thus not yielding satisfactory results. To tackle these issues, we propose an intelligent diagnosis system for this challenging task, mainly including a lymph node detection (LND) model and a lymph node metastasis prediction (LNMP) model. In detail, the LND model utilizes an encoder-decoder network to detect lymph nodes, and the LNMP model employs an innovative attention-based multiple instance learning (MIL) network. An instance-level self-attention feature enhancement module is designed to extract and augment lymph node features as a bag of instances. Furthermore, a bag-level MIL prediction module is employed to extract instance features and create a bag representation for the ultimate LNM prediction. As far as we know, the proposed intelligent system represents the pioneering method for addressing this complex clinical challenge. In experiments, our proposed intelligent system achieves the AUC of 75.4% and the accuracy of 73.9%, showcasing a significant enhancement compared to physicians specialising in CRC and highlighting its strong clinical applicability. The accessible code can be found at https://github.com/SCU-MI/IS-LNM.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.