{"title":"封面内页图片","authors":"","doi":"10.1002/eom2.12474","DOIUrl":null,"url":null,"abstract":"<p>Indoor photovoltaics suffer from non-radiative recombination and parasitic leakage current especially due to low carrier density. Incorporating a porous alumina interlayer in perovskite photovoltaics mitigates non-radiative recombination and parasitic leakage current, enhancing efficiency under low-light indoor conditions. This strategy is demonstrated in large-area modules at 23.03 cm<sup>2</sup>, achieving 33.5% efficiency and 107.3 µW/cm<sup>2</sup> power density under LED 1000 lux.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"6 6","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12474","citationCount":"0","resultStr":"{\"title\":\"Inside Front Cover Image\",\"authors\":\"\",\"doi\":\"10.1002/eom2.12474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Indoor photovoltaics suffer from non-radiative recombination and parasitic leakage current especially due to low carrier density. Incorporating a porous alumina interlayer in perovskite photovoltaics mitigates non-radiative recombination and parasitic leakage current, enhancing efficiency under low-light indoor conditions. This strategy is demonstrated in large-area modules at 23.03 cm<sup>2</sup>, achieving 33.5% efficiency and 107.3 µW/cm<sup>2</sup> power density under LED 1000 lux.\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"6 6\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12474\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Indoor photovoltaics suffer from non-radiative recombination and parasitic leakage current especially due to low carrier density. Incorporating a porous alumina interlayer in perovskite photovoltaics mitigates non-radiative recombination and parasitic leakage current, enhancing efficiency under low-light indoor conditions. This strategy is demonstrated in large-area modules at 23.03 cm2, achieving 33.5% efficiency and 107.3 µW/cm2 power density under LED 1000 lux.