{"title":"包覆 HUCB 间充质干细胞的高分子多功能水凝胶的新型制备方法可有效促进急性心肌梗死后的心脏修复再生","authors":"Jun Xue, Yu Ping Gao","doi":"10.1186/s13765-024-00904-8","DOIUrl":null,"url":null,"abstract":"<div><p>Acute myocardial infarction (AMI) has been treated via injectable hydrogels and biomaterial patches invented using tissue engineering advancements over the past decade. Yet the curative potential of injectable hydrogels and stem cells is limited. Here, we propose the development of an injectable and conductive hydrogel composed of oxidised macromolecular hyaluronic acid and chitosan-grafted aniline tetramer polymeric components. In an attempt to enhance the therapeutic potential of AMI therapy, mesenchymal stem cells derived from human umbilical cord blood (HUCB-MSC) have been integrated into the formulation of a conductive hydrogel. For reliable connection to the beating hearts, the hydrogel exhibited suitable adhesive properties. Hydrogel’s potent biocompatibility was determined by in vitro investigations of cell viability and proliferation of NRCMs and H9C2 cardiomyocytes. After myocardial injection, longer HUCB-MSCs survival length, cardiac functioning, and histology in SD rat myocardium were demonstrated, greatly associated by up-regulation and downregulation of cardiac-related relative gene expressions of angiogenic factors and inflammatory factors, respectively. The injectable hydrogel that contained HUCB-MSCs substantially enhanced the therapeutic benefits, indicating a potentially beneficial therapeutic approach to AMI therapy.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00904-8","citationCount":"0","resultStr":"{\"title\":\"Novel fabrication of macromolecular multi-functional hydrogel encapsulated with HUCB-derived mesenchymal stem cells to effective regeneration of cardiac repair after acute myocardial infarction\",\"authors\":\"Jun Xue, Yu Ping Gao\",\"doi\":\"10.1186/s13765-024-00904-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Acute myocardial infarction (AMI) has been treated via injectable hydrogels and biomaterial patches invented using tissue engineering advancements over the past decade. Yet the curative potential of injectable hydrogels and stem cells is limited. Here, we propose the development of an injectable and conductive hydrogel composed of oxidised macromolecular hyaluronic acid and chitosan-grafted aniline tetramer polymeric components. In an attempt to enhance the therapeutic potential of AMI therapy, mesenchymal stem cells derived from human umbilical cord blood (HUCB-MSC) have been integrated into the formulation of a conductive hydrogel. For reliable connection to the beating hearts, the hydrogel exhibited suitable adhesive properties. Hydrogel’s potent biocompatibility was determined by in vitro investigations of cell viability and proliferation of NRCMs and H9C2 cardiomyocytes. After myocardial injection, longer HUCB-MSCs survival length, cardiac functioning, and histology in SD rat myocardium were demonstrated, greatly associated by up-regulation and downregulation of cardiac-related relative gene expressions of angiogenic factors and inflammatory factors, respectively. The injectable hydrogel that contained HUCB-MSCs substantially enhanced the therapeutic benefits, indicating a potentially beneficial therapeutic approach to AMI therapy.</p></div>\",\"PeriodicalId\":467,\"journal\":{\"name\":\"Applied Biological Chemistry\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00904-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biological Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13765-024-00904-8\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-024-00904-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Novel fabrication of macromolecular multi-functional hydrogel encapsulated with HUCB-derived mesenchymal stem cells to effective regeneration of cardiac repair after acute myocardial infarction
Acute myocardial infarction (AMI) has been treated via injectable hydrogels and biomaterial patches invented using tissue engineering advancements over the past decade. Yet the curative potential of injectable hydrogels and stem cells is limited. Here, we propose the development of an injectable and conductive hydrogel composed of oxidised macromolecular hyaluronic acid and chitosan-grafted aniline tetramer polymeric components. In an attempt to enhance the therapeutic potential of AMI therapy, mesenchymal stem cells derived from human umbilical cord blood (HUCB-MSC) have been integrated into the formulation of a conductive hydrogel. For reliable connection to the beating hearts, the hydrogel exhibited suitable adhesive properties. Hydrogel’s potent biocompatibility was determined by in vitro investigations of cell viability and proliferation of NRCMs and H9C2 cardiomyocytes. After myocardial injection, longer HUCB-MSCs survival length, cardiac functioning, and histology in SD rat myocardium were demonstrated, greatly associated by up-regulation and downregulation of cardiac-related relative gene expressions of angiogenic factors and inflammatory factors, respectively. The injectable hydrogel that contained HUCB-MSCs substantially enhanced the therapeutic benefits, indicating a potentially beneficial therapeutic approach to AMI therapy.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.