论拉姆齐理论中不对称元组小群的发送者使用问题

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Simona Boyadzhiyska , Thomas Lesgourgues
{"title":"论拉姆齐理论中不对称元组小群的发送者使用问题","authors":"Simona Boyadzhiyska ,&nbsp;Thomas Lesgourgues","doi":"10.1016/j.jctb.2024.05.006","DOIUrl":null,"url":null,"abstract":"<div><p>A graph <em>G</em> is <em>q-Ramsey</em> for a <em>q</em>-tuple of graphs <span><math><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> if for every <em>q</em>-coloring of the edges of <em>G</em> there exists a monochromatic copy of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in color <em>i</em> for some <span><math><mi>i</mi><mo>∈</mo><mo>[</mo><mi>q</mi><mo>]</mo></math></span>. Over the last few decades, researchers have investigated a number of questions related to this notion, aiming to understand the properties of graphs that are <em>q</em>-Ramsey for a fixed tuple. Among the tools developed while studying questions of this type are gadget graphs, called signal senders and determiners, which have proven invaluable for building Ramsey graphs with certain properties. However, until now these gadgets have been shown to exist and used mainly in the two-color setting or in the symmetric multicolor setting, and our knowledge about their existence for multicolor asymmetric tuples is extremely limited. In this paper, we construct such gadgets for any tuple of cliques. We then use these gadgets to generalize three classical theorems in this area to the asymmetric multicolor setting.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000455/pdfft?md5=2b7bd0f20408d42167594cf123d9f0c1&pid=1-s2.0-S0095895624000455-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the use of senders for asymmetric tuples of cliques in Ramsey theory\",\"authors\":\"Simona Boyadzhiyska ,&nbsp;Thomas Lesgourgues\",\"doi\":\"10.1016/j.jctb.2024.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A graph <em>G</em> is <em>q-Ramsey</em> for a <em>q</em>-tuple of graphs <span><math><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> if for every <em>q</em>-coloring of the edges of <em>G</em> there exists a monochromatic copy of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in color <em>i</em> for some <span><math><mi>i</mi><mo>∈</mo><mo>[</mo><mi>q</mi><mo>]</mo></math></span>. Over the last few decades, researchers have investigated a number of questions related to this notion, aiming to understand the properties of graphs that are <em>q</em>-Ramsey for a fixed tuple. Among the tools developed while studying questions of this type are gadget graphs, called signal senders and determiners, which have proven invaluable for building Ramsey graphs with certain properties. However, until now these gadgets have been shown to exist and used mainly in the two-color setting or in the symmetric multicolor setting, and our knowledge about their existence for multicolor asymmetric tuples is extremely limited. In this paper, we construct such gadgets for any tuple of cliques. We then use these gadgets to generalize three classical theorems in this area to the asymmetric multicolor setting.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000455/pdfft?md5=2b7bd0f20408d42167594cf123d9f0c1&pid=1-s2.0-S0095895624000455-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000455\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000455","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

如果对于 G 的边的每 q 种颜色,在某个 i∈[q]中都存在 Hi 的单色副本,那么对于图的 q 组(H1,...,Hq)来说,图 G 是 q-Ramsey 图。在过去的几十年里,研究人员研究了许多与这一概念相关的问题,旨在了解对于固定元组而言具有 q-Ramsey 的图的性质。在研究这类问题的过程中开发的工具包括小工具图,即信号发送器和确定器,它们已被证明在构建具有某些属性的拉姆齐图时非常有用。然而,到目前为止,这些小工具主要是在双色或对称多色环境中被证明存在和使用,而我们对多色非对称图元存在的了解极为有限。在本文中,我们为任何元组构建了这种小工具。然后,我们利用这些小工具将这一领域的三个经典定理推广到非对称多色环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the use of senders for asymmetric tuples of cliques in Ramsey theory

A graph G is q-Ramsey for a q-tuple of graphs (H1,,Hq) if for every q-coloring of the edges of G there exists a monochromatic copy of Hi in color i for some i[q]. Over the last few decades, researchers have investigated a number of questions related to this notion, aiming to understand the properties of graphs that are q-Ramsey for a fixed tuple. Among the tools developed while studying questions of this type are gadget graphs, called signal senders and determiners, which have proven invaluable for building Ramsey graphs with certain properties. However, until now these gadgets have been shown to exist and used mainly in the two-color setting or in the symmetric multicolor setting, and our knowledge about their existence for multicolor asymmetric tuples is extremely limited. In this paper, we construct such gadgets for any tuple of cliques. We then use these gadgets to generalize three classical theorems in this area to the asymmetric multicolor setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信