{"title":"论边缘收缩下平均子树顺序的差异","authors":"Ruoyu Wang","doi":"10.1016/j.jctb.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Given a tree <em>T</em> of order <em>n</em>, one can contract any edge and obtain a new tree <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of order <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. In 1983, Jamison made a conjecture that the mean subtree order, i.e., the average order of all subtrees, decreases at least <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> in contracting an edge of a tree. In 2023, Luo, Xu, Wagner and Wang proved the case when the edge to be contracted is a pendant edge. In this article, we prove that the conjecture is true in general.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 45-62"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000467/pdfft?md5=bc686935124fe54d5af1a2d92fba12b9&pid=1-s2.0-S0095895624000467-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the difference of mean subtree orders under edge contraction\",\"authors\":\"Ruoyu Wang\",\"doi\":\"10.1016/j.jctb.2024.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a tree <em>T</em> of order <em>n</em>, one can contract any edge and obtain a new tree <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> of order <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. In 1983, Jamison made a conjecture that the mean subtree order, i.e., the average order of all subtrees, decreases at least <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> in contracting an edge of a tree. In 2023, Luo, Xu, Wagner and Wang proved the case when the edge to be contracted is a pendant edge. In this article, we prove that the conjecture is true in general.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"169 \",\"pages\":\"Pages 45-62\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000467/pdfft?md5=bc686935124fe54d5af1a2d92fba12b9&pid=1-s2.0-S0095895624000467-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000467\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000467","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给定一棵阶数为 n 的树 T,可以收缩任意一条边,得到一棵阶数为 n-1 的新树 T⁎。1983 年,Jamison 提出了一个猜想,即在收缩树的一条边时,平均子树序(即所有子树的平均序)至少会减少 13。2023 年,Luo、Xu、Wagner 和 Wang 证明了要收缩的边是垂边时的情况。在本文中,我们将证明该猜想在一般情况下为真。
On the difference of mean subtree orders under edge contraction
Given a tree T of order n, one can contract any edge and obtain a new tree of order . In 1983, Jamison made a conjecture that the mean subtree order, i.e., the average order of all subtrees, decreases at least in contracting an edge of a tree. In 2023, Luo, Xu, Wagner and Wang proved the case when the edge to be contracted is a pendant edge. In this article, we prove that the conjecture is true in general.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.