通过扩散实现分子通信的吸收偏移键控

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Miaowen Wen;Feng Liang;Wen Ye;Xuan Chen
{"title":"通过扩散实现分子通信的吸收偏移键控","authors":"Miaowen Wen;Feng Liang;Wen Ye;Xuan Chen","doi":"10.1109/TMBMC.2024.3364019","DOIUrl":null,"url":null,"abstract":"In molecular communication (MC), molecules can play dual roles, one as information carriers and the other as energy providers based on chemical reactions, the importance of which is self-evident. In this paper, we propose a novel modulation scheme, termed absorption shift keying (AbSK), to harvest unused molecules while boosting system performance. It relies on a third switch-controllable molecule harvesting node in addition to both transmitter and receiver in a conventional point-to-point MC scenario. In this setting, the proposed AbSK encodes information onto the ON/OFF state of the third node, so that it can act as a secondary source while capturing redundant molecules released by the primary source (or transmitter). Two detectors are designed for AbSK, namely ideal maximum likelihood and two-step detectors. Asymptotically tight bounds on the bit error rates of both detectors are derived in closed-form. Simulation results validate our theoretical analysis and show that the proposed AbSK outperforms benchmarks and additionally captures molecules to power future transmissions.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Absorption Shift Keying for Molecular Communication via Diffusion\",\"authors\":\"Miaowen Wen;Feng Liang;Wen Ye;Xuan Chen\",\"doi\":\"10.1109/TMBMC.2024.3364019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In molecular communication (MC), molecules can play dual roles, one as information carriers and the other as energy providers based on chemical reactions, the importance of which is self-evident. In this paper, we propose a novel modulation scheme, termed absorption shift keying (AbSK), to harvest unused molecules while boosting system performance. It relies on a third switch-controllable molecule harvesting node in addition to both transmitter and receiver in a conventional point-to-point MC scenario. In this setting, the proposed AbSK encodes information onto the ON/OFF state of the third node, so that it can act as a secondary source while capturing redundant molecules released by the primary source (or transmitter). Two detectors are designed for AbSK, namely ideal maximum likelihood and two-step detectors. Asymptotically tight bounds on the bit error rates of both detectors are derived in closed-form. Simulation results validate our theoretical analysis and show that the proposed AbSK outperforms benchmarks and additionally captures molecules to power future transmissions.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10428088/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10428088/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在分子通信(MC)中,分子可以扮演双重角色,一个是信息载体,另一个是基于化学反应的能量提供者,其重要性不言而喻。在本文中,我们提出了一种新颖的调制方案,称为吸收偏移键控(AbSK),用于收集未使用的分子,同时提高系统性能。在传统的点对点 MC 方案中,除了发射器和接收器之外,它还依赖于第三个开关可控的分子收集节点。在这种情况下,拟议的 AbSK 将信息编码到第三个节点的开/关状态,这样它就可以充当辅助源,同时捕获主源(或发射器)释放的多余分子。为 AbSK 设计了两种检测器,即理想最大似然检测器和两步检测器。以闭合形式推导出这两种检测器误码率的渐近紧约束。仿真结果验证了我们的理论分析,并表明所提出的 AbSK 性能优于基准,而且还能捕获分子,为未来的传输提供动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Absorption Shift Keying for Molecular Communication via Diffusion
In molecular communication (MC), molecules can play dual roles, one as information carriers and the other as energy providers based on chemical reactions, the importance of which is self-evident. In this paper, we propose a novel modulation scheme, termed absorption shift keying (AbSK), to harvest unused molecules while boosting system performance. It relies on a third switch-controllable molecule harvesting node in addition to both transmitter and receiver in a conventional point-to-point MC scenario. In this setting, the proposed AbSK encodes information onto the ON/OFF state of the third node, so that it can act as a secondary source while capturing redundant molecules released by the primary source (or transmitter). Two detectors are designed for AbSK, namely ideal maximum likelihood and two-step detectors. Asymptotically tight bounds on the bit error rates of both detectors are derived in closed-form. Simulation results validate our theoretical analysis and show that the proposed AbSK outperforms benchmarks and additionally captures molecules to power future transmissions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信