{"title":"探索亚波长光栅作为短波长红外滤光片的功效。","authors":"Hezhuang Liu, Yixuan Huang, Jiang Wu","doi":"10.1186/s11671-024-04045-1","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in nanofabrication technology have greatly facilitated research on nanostructures and their associated properties. Among these structures, subwavelength components have emerged as promising candidates for ultra-compact optical elements, can potentially supplant conventional optical components and enable the realization of compact and efficient optical devices. Spectral analysis within the infrared spectrum offers a wealth of information for monitoring crop health, industrial processes, and target identification. However, conventional spectrometers are typically bulky and expensive, driving an increasing demand for cost-effective spectral sensors. Here we investigate three distinct subwavelength grating structures designed to function as narrowband filters within the short-wavelength infrared (SWIR) range. Through simple adjustments to the period of grating strips, these filters selectively transmit light across a wide wavelength range from 1100 to 1700 nm with transmission exceeding 70% and full width at half maximum (FWHM) down to 6 nm. Based on a simple design, the results present great potential of subwavelength grating filters for multiband integration and developing ultra-compact spectral sensors.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"104"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11183007/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the efficacy of subwavelength gratings as short-wavelength infrared filters.\",\"authors\":\"Hezhuang Liu, Yixuan Huang, Jiang Wu\",\"doi\":\"10.1186/s11671-024-04045-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancements in nanofabrication technology have greatly facilitated research on nanostructures and their associated properties. Among these structures, subwavelength components have emerged as promising candidates for ultra-compact optical elements, can potentially supplant conventional optical components and enable the realization of compact and efficient optical devices. Spectral analysis within the infrared spectrum offers a wealth of information for monitoring crop health, industrial processes, and target identification. However, conventional spectrometers are typically bulky and expensive, driving an increasing demand for cost-effective spectral sensors. Here we investigate three distinct subwavelength grating structures designed to function as narrowband filters within the short-wavelength infrared (SWIR) range. Through simple adjustments to the period of grating strips, these filters selectively transmit light across a wide wavelength range from 1100 to 1700 nm with transmission exceeding 70% and full width at half maximum (FWHM) down to 6 nm. Based on a simple design, the results present great potential of subwavelength grating filters for multiband integration and developing ultra-compact spectral sensors.</p>\",\"PeriodicalId\":72828,\"journal\":{\"name\":\"Discover nano\",\"volume\":\"19 1\",\"pages\":\"104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11183007/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover nano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s11671-024-04045-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-024-04045-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the efficacy of subwavelength gratings as short-wavelength infrared filters.
Advancements in nanofabrication technology have greatly facilitated research on nanostructures and their associated properties. Among these structures, subwavelength components have emerged as promising candidates for ultra-compact optical elements, can potentially supplant conventional optical components and enable the realization of compact and efficient optical devices. Spectral analysis within the infrared spectrum offers a wealth of information for monitoring crop health, industrial processes, and target identification. However, conventional spectrometers are typically bulky and expensive, driving an increasing demand for cost-effective spectral sensors. Here we investigate three distinct subwavelength grating structures designed to function as narrowband filters within the short-wavelength infrared (SWIR) range. Through simple adjustments to the period of grating strips, these filters selectively transmit light across a wide wavelength range from 1100 to 1700 nm with transmission exceeding 70% and full width at half maximum (FWHM) down to 6 nm. Based on a simple design, the results present great potential of subwavelength grating filters for multiband integration and developing ultra-compact spectral sensors.