GSK-3β 同源物 Rim11 的多信号调控控制着芽殖酵母的减数分裂过程。

IF 9.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
EMBO Journal Pub Date : 2024-08-01 Epub Date: 2024-06-17 DOI:10.1038/s44318-024-00149-7
Johanna Kociemba, Andreas Christ Sølvsten Jørgensen, Nika Tadić, Anthony Harris, Theodora Sideri, Wei Yee Chan, Fairouz Ibrahim, Elçin Ünal, Mark Skehel, Vahid Shahrezaei, Orlando Argüello-Miranda, Folkert Jacobus van Werven
{"title":"GSK-3β 同源物 Rim11 的多信号调控控制着芽殖酵母的减数分裂过程。","authors":"Johanna Kociemba, Andreas Christ Sølvsten Jørgensen, Nika Tadić, Anthony Harris, Theodora Sideri, Wei Yee Chan, Fairouz Ibrahim, Elçin Ünal, Mark Skehel, Vahid Shahrezaei, Orlando Argüello-Miranda, Folkert Jacobus van Werven","doi":"10.1038/s44318-024-00149-7","DOIUrl":null,"url":null,"abstract":"<p><p>Starvation in diploid budding yeast cells triggers a cell-fate program culminating in meiosis and spore formation. Transcriptional activation of early meiotic genes (EMGs) hinges on the master regulator Ime1, its DNA-binding partner Ume6, and GSK-3β kinase Rim11. Phosphorylation of Ume6 by Rim11 is required for EMG activation. We report here that Rim11 functions as the central signal integrator for controlling Ume6 phosphorylation and EMG transcription. In nutrient-rich conditions, PKA suppresses Rim11 levels, while TORC1 retains Rim11 in the cytoplasm. Inhibition of PKA and TORC1 induces Rim11 expression and nuclear localization. Remarkably, nuclear Rim11 is required, but not sufficient, for Rim11-dependent Ume6 phosphorylation. In addition, Ime1 is an anchor protein enabling Ume6 phosphorylation by Rim11. Subsequently, Ume6-Ime1 coactivator complexes form and induce EMG transcription. Our results demonstrate how various signaling inputs (PKA/TORC1/Ime1) converge through Rim11 to regulate EMG expression and meiosis initiation. We posit that the signaling-regulatory network elucidated here generates robustness in cell-fate control.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294583/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-signal regulation of the GSK-3β homolog Rim11 controls meiosis entry in budding yeast.\",\"authors\":\"Johanna Kociemba, Andreas Christ Sølvsten Jørgensen, Nika Tadić, Anthony Harris, Theodora Sideri, Wei Yee Chan, Fairouz Ibrahim, Elçin Ünal, Mark Skehel, Vahid Shahrezaei, Orlando Argüello-Miranda, Folkert Jacobus van Werven\",\"doi\":\"10.1038/s44318-024-00149-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Starvation in diploid budding yeast cells triggers a cell-fate program culminating in meiosis and spore formation. Transcriptional activation of early meiotic genes (EMGs) hinges on the master regulator Ime1, its DNA-binding partner Ume6, and GSK-3β kinase Rim11. Phosphorylation of Ume6 by Rim11 is required for EMG activation. We report here that Rim11 functions as the central signal integrator for controlling Ume6 phosphorylation and EMG transcription. In nutrient-rich conditions, PKA suppresses Rim11 levels, while TORC1 retains Rim11 in the cytoplasm. Inhibition of PKA and TORC1 induces Rim11 expression and nuclear localization. Remarkably, nuclear Rim11 is required, but not sufficient, for Rim11-dependent Ume6 phosphorylation. In addition, Ime1 is an anchor protein enabling Ume6 phosphorylation by Rim11. Subsequently, Ume6-Ime1 coactivator complexes form and induce EMG transcription. Our results demonstrate how various signaling inputs (PKA/TORC1/Ime1) converge through Rim11 to regulate EMG expression and meiosis initiation. We posit that the signaling-regulatory network elucidated here generates robustness in cell-fate control.</p>\",\"PeriodicalId\":50533,\"journal\":{\"name\":\"EMBO Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294583/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-024-00149-7\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00149-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

二倍体芽殖酵母细胞的饥饿会触发细胞命运程序,最终导致减数分裂和孢子形成。早期减数分裂基因(EMG)的转录激活取决于主调节因子Ime1、其DNA结合伙伴Ume6和GSK-3β激酶Rim11。EMG 激活需要 Rim11 对 Ume6 进行磷酸化。我们在此报告了 Rim11 作为控制 Ume6 磷酸化和 EMG 转录的中心信号整合器的功能。在营养丰富的条件下,PKA 会抑制 Rim11 的水平,而 TORC1 则会将 Rim11 保留在细胞质中。抑制 PKA 和 TORC1 会诱导 Rim11 的表达和核定位。值得注意的是,核 Rim11 是 Rim11 依赖性 Ume6 磷酸化所必需的,但还不够。此外,Ime1 是一种锚蛋白,能使 Ume6 通过 Rim11 磷酸化。随后,Ume6-Ime1 辅激活剂复合物形成并诱导 EMG 转录。我们的研究结果表明了各种信号输入(PKA/TORC1/Ime1)是如何通过 Rim11 汇聚到一起,调节 EMG 的表达和减数分裂的启动。我们认为,本文所阐明的信号调控网络可在细胞命运控制中产生稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-signal regulation of the GSK-3β homolog Rim11 controls meiosis entry in budding yeast.

Starvation in diploid budding yeast cells triggers a cell-fate program culminating in meiosis and spore formation. Transcriptional activation of early meiotic genes (EMGs) hinges on the master regulator Ime1, its DNA-binding partner Ume6, and GSK-3β kinase Rim11. Phosphorylation of Ume6 by Rim11 is required for EMG activation. We report here that Rim11 functions as the central signal integrator for controlling Ume6 phosphorylation and EMG transcription. In nutrient-rich conditions, PKA suppresses Rim11 levels, while TORC1 retains Rim11 in the cytoplasm. Inhibition of PKA and TORC1 induces Rim11 expression and nuclear localization. Remarkably, nuclear Rim11 is required, but not sufficient, for Rim11-dependent Ume6 phosphorylation. In addition, Ime1 is an anchor protein enabling Ume6 phosphorylation by Rim11. Subsequently, Ume6-Ime1 coactivator complexes form and induce EMG transcription. Our results demonstrate how various signaling inputs (PKA/TORC1/Ime1) converge through Rim11 to regulate EMG expression and meiosis initiation. We posit that the signaling-regulatory network elucidated here generates robustness in cell-fate control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMBO Journal
EMBO Journal 生物-生化与分子生物学
CiteScore
18.90
自引率
0.90%
发文量
246
审稿时长
1.5 months
期刊介绍: The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance. With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信