{"title":"用于完整心脏循环的智能主动脉瓣模型。","authors":"Mehmet Iscan, Aydin Yesildirek","doi":"10.1002/cnm.3838","DOIUrl":null,"url":null,"abstract":"<p>The aortic valve (AV) is crucial for cardiovascular (CV) hemodynamic, impacting cardiac output (CO) and left ventricular volumetric flow rate (LVQ). Its nonlinear behavior challenges standard LVQ prediction methods as well as CO one. This study presents a novel approach for modeling the AV in the CV system, offering an improved method for estimating crucial parameters like LVQ across various AV conditions, including aortic stenosis (AS). The model, based on AV channel length during the entire cardiac phase, introduces a time-varying AV resistance (TV-AVR) parameterized by the pressure ratio across the AV and LVQ, enabling the simulation of both healthy and AS-related conditions. To validate this model, in vitro measurements are compared using a hybrid mock circulatory loop device. An unconventional use of a convolutional neural network (CNN) corrects the model's estimates, eliminating the need for labeled datasets. This approach, incorporating real-time learning and transforming 1-D CV signals into 2-D tensors, significantly improves the accuracy of LVQ measurements, achieving an error rate of less than 3.41 ± 4.84% for CO in healthy conditions and 2.83 ± 1.35% in AS cases—a 33.13% enhancement over linear diode models. These results underscore the potential of this approach for enhancing the diagnosis, prediction, and treatment of AV diseases. The key contributions of the proposed method encompass nonlinear TV-AVR estimation, investigation of transient CV responses, prediction of instantaneous CO, development of a flexible framework for noninvasive measurements integration, and the introduction of an adjustable resistance model using an extended Kalman filter (EKF) and CNN combination, all without requiring labeled data.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 8","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3838","citationCount":"0","resultStr":"{\"title\":\"An intelligent aortic valve model for complete cardiac cycle\",\"authors\":\"Mehmet Iscan, Aydin Yesildirek\",\"doi\":\"10.1002/cnm.3838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aortic valve (AV) is crucial for cardiovascular (CV) hemodynamic, impacting cardiac output (CO) and left ventricular volumetric flow rate (LVQ). Its nonlinear behavior challenges standard LVQ prediction methods as well as CO one. This study presents a novel approach for modeling the AV in the CV system, offering an improved method for estimating crucial parameters like LVQ across various AV conditions, including aortic stenosis (AS). The model, based on AV channel length during the entire cardiac phase, introduces a time-varying AV resistance (TV-AVR) parameterized by the pressure ratio across the AV and LVQ, enabling the simulation of both healthy and AS-related conditions. To validate this model, in vitro measurements are compared using a hybrid mock circulatory loop device. An unconventional use of a convolutional neural network (CNN) corrects the model's estimates, eliminating the need for labeled datasets. This approach, incorporating real-time learning and transforming 1-D CV signals into 2-D tensors, significantly improves the accuracy of LVQ measurements, achieving an error rate of less than 3.41 ± 4.84% for CO in healthy conditions and 2.83 ± 1.35% in AS cases—a 33.13% enhancement over linear diode models. These results underscore the potential of this approach for enhancing the diagnosis, prediction, and treatment of AV diseases. The key contributions of the proposed method encompass nonlinear TV-AVR estimation, investigation of transient CV responses, prediction of instantaneous CO, development of a flexible framework for noninvasive measurements integration, and the introduction of an adjustable resistance model using an extended Kalman filter (EKF) and CNN combination, all without requiring labeled data.</p>\",\"PeriodicalId\":50349,\"journal\":{\"name\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"volume\":\"40 8\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3838\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3838\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3838","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
主动脉瓣(AV)对心血管(CV)血流动力学至关重要,影响心输出量(CO)和左心室容积流量(LVQ)。它的非线性行为对标准 LVQ 预测方法和 CO 预测方法提出了挑战。本研究提出了一种对心血管系统中的房室进行建模的新方法,为估算包括主动脉瓣狭窄(AS)在内的各种房室情况下的 LVQ 等关键参数提供了一种改进方法。该模型以整个心动期的房室通道长度为基础,引入了时变房室阻力(TV-AVR),参数为房室压力比和 LVQ,可模拟健康和 AS 相关情况。为了验证该模型,我们使用混合模拟循环回路装置对体外测量结果进行了比较。卷积神经网络(CNN)的非常规使用修正了模型的估计值,从而消除了对标记数据集的需求。这种方法结合了实时学习,并将一维 CV 信号转化为二维张量,显著提高了 LVQ 测量的准确性,在健康状况下 CO 的误差率低于 3.41 ± 4.84%,在 AS 病例中误差率为 2.83 ± 1.35%,比线性二极管模型提高了 33.13%。这些结果凸显了这种方法在提高诊断、预测和治疗视网膜疾病方面的潜力。所提方法的主要贡献包括非线性 TV-AVR 估计、研究瞬时 CV 响应、预测瞬时 CO、开发无创测量集成的灵活框架,以及使用扩展卡尔曼滤波器 (EKF) 和 CNN 组合引入可调电阻模型,所有这些都不需要标记数据。
An intelligent aortic valve model for complete cardiac cycle
The aortic valve (AV) is crucial for cardiovascular (CV) hemodynamic, impacting cardiac output (CO) and left ventricular volumetric flow rate (LVQ). Its nonlinear behavior challenges standard LVQ prediction methods as well as CO one. This study presents a novel approach for modeling the AV in the CV system, offering an improved method for estimating crucial parameters like LVQ across various AV conditions, including aortic stenosis (AS). The model, based on AV channel length during the entire cardiac phase, introduces a time-varying AV resistance (TV-AVR) parameterized by the pressure ratio across the AV and LVQ, enabling the simulation of both healthy and AS-related conditions. To validate this model, in vitro measurements are compared using a hybrid mock circulatory loop device. An unconventional use of a convolutional neural network (CNN) corrects the model's estimates, eliminating the need for labeled datasets. This approach, incorporating real-time learning and transforming 1-D CV signals into 2-D tensors, significantly improves the accuracy of LVQ measurements, achieving an error rate of less than 3.41 ± 4.84% for CO in healthy conditions and 2.83 ± 1.35% in AS cases—a 33.13% enhancement over linear diode models. These results underscore the potential of this approach for enhancing the diagnosis, prediction, and treatment of AV diseases. The key contributions of the proposed method encompass nonlinear TV-AVR estimation, investigation of transient CV responses, prediction of instantaneous CO, development of a flexible framework for noninvasive measurements integration, and the introduction of an adjustable resistance model using an extended Kalman filter (EKF) and CNN combination, all without requiring labeled data.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.