Wen-Hao Li, Zhi-Qiang Li, Meng-Di Bu, Jia-Zhen Li, Liang-Biao Chen
{"title":"基于代谢组学的分析揭示了低温诱导斑马鱼卵巢功能衰竭的胆汁酸介导机制","authors":"Wen-Hao Li, Zhi-Qiang Li, Meng-Di Bu, Jia-Zhen Li, Liang-Biao Chen","doi":"10.24272/j.issn.2095-8137.2023.369","DOIUrl":null,"url":null,"abstract":"<p><p>As ectotherms, fish are highly sensitive to temperature fluctuations, which can profoundly impact their reproductive cycles. In this study, we investigated the fertility and histological characteristics of zebrafish ( <i>Danio rerio</i>) ovaries exposed to a temperature gradient ranging from the thermopreferendum temperature of the species, 27°C, to lower temperatures of 22°C, 20°C, and 13°C over a period of two weeks. Comparative metabolomic (six biological replicates for each temperature) and transcriptomic (four biological replicates for each temperature) analyses were conducted under the four temperature conditions. Results indicated that lower temperatures inhibited oocyte development and differential metabolites were involved in steroid hormone production, antioxidant function, and lipid and protein catabolism. Disrupted reproductive hormones, increased proteolysis, and lipid degradation significantly impeded oocyte development and egg maturation. Notably, a significant increase in bile acid content was noted in the ovaries of the cold-treated fish, indicating that bile acids play a critical role in ovarian failure. Overall, these findings provide valuable insights into the mechanisms governing the reproductive response of fish to cold stress.</p>","PeriodicalId":48636,"journal":{"name":"Zoological Research","volume":"45 4","pages":"791-804"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298673/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolomic-based analysis reveals bile acid-mediated ovarian failure induced by low temperature in zebrafish.\",\"authors\":\"Wen-Hao Li, Zhi-Qiang Li, Meng-Di Bu, Jia-Zhen Li, Liang-Biao Chen\",\"doi\":\"10.24272/j.issn.2095-8137.2023.369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As ectotherms, fish are highly sensitive to temperature fluctuations, which can profoundly impact their reproductive cycles. In this study, we investigated the fertility and histological characteristics of zebrafish ( <i>Danio rerio</i>) ovaries exposed to a temperature gradient ranging from the thermopreferendum temperature of the species, 27°C, to lower temperatures of 22°C, 20°C, and 13°C over a period of two weeks. Comparative metabolomic (six biological replicates for each temperature) and transcriptomic (four biological replicates for each temperature) analyses were conducted under the four temperature conditions. Results indicated that lower temperatures inhibited oocyte development and differential metabolites were involved in steroid hormone production, antioxidant function, and lipid and protein catabolism. Disrupted reproductive hormones, increased proteolysis, and lipid degradation significantly impeded oocyte development and egg maturation. Notably, a significant increase in bile acid content was noted in the ovaries of the cold-treated fish, indicating that bile acids play a critical role in ovarian failure. Overall, these findings provide valuable insights into the mechanisms governing the reproductive response of fish to cold stress.</p>\",\"PeriodicalId\":48636,\"journal\":{\"name\":\"Zoological Research\",\"volume\":\"45 4\",\"pages\":\"791-804\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298673/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoological Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.24272/j.issn.2095-8137.2023.369\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.24272/j.issn.2095-8137.2023.369","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Metabolomic-based analysis reveals bile acid-mediated ovarian failure induced by low temperature in zebrafish.
As ectotherms, fish are highly sensitive to temperature fluctuations, which can profoundly impact their reproductive cycles. In this study, we investigated the fertility and histological characteristics of zebrafish ( Danio rerio) ovaries exposed to a temperature gradient ranging from the thermopreferendum temperature of the species, 27°C, to lower temperatures of 22°C, 20°C, and 13°C over a period of two weeks. Comparative metabolomic (six biological replicates for each temperature) and transcriptomic (four biological replicates for each temperature) analyses were conducted under the four temperature conditions. Results indicated that lower temperatures inhibited oocyte development and differential metabolites were involved in steroid hormone production, antioxidant function, and lipid and protein catabolism. Disrupted reproductive hormones, increased proteolysis, and lipid degradation significantly impeded oocyte development and egg maturation. Notably, a significant increase in bile acid content was noted in the ovaries of the cold-treated fish, indicating that bile acids play a critical role in ovarian failure. Overall, these findings provide valuable insights into the mechanisms governing the reproductive response of fish to cold stress.
期刊介绍:
Established in 1980, Zoological Research (ZR) is a bimonthly publication produced by Kunming Institute of Zoology, the Chinese Academy of Sciences, and the China Zoological Society. It publishes peer-reviewed original research article/review/report/note/letter to the editor/editorial in English on Primates and Animal Models, Conservation and Utilization of Animal Resources, and Animal Diversity and Evolution.