Yajie Huang, Yaozhong Zhang, Xiaoyang Duan, Ran Hou, Qi Wang, Jian Shi
{"title":"探索表皮生长因子受体阴性肺腺癌中 M2 肿瘤相关巨噬细胞相关基因特征的免疫格局和药物预测。","authors":"Yajie Huang, Yaozhong Zhang, Xiaoyang Duan, Ran Hou, Qi Wang, Jian Shi","doi":"10.1111/1759-7714.15375","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Improving immunotherapy efficacy for EGFR-negative lung adenocarcinoma (LUAD) patients remains a critical challenge, and the therapeutic effect of immunotherapy is largely determined by the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the top-ranked immune infiltrating cells in the TME, and M2-TAMs exert potent roles in tumor promotion and chemotherapy resistance. An M2-TAM-based prognostic signature was constructed by integrative analysis of single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data to reveal the immune landscape and select drugs in EGFR-negative LUAD.</p><p><strong>Methods: </strong>M2-TAM-based biomarkers were obtained from the intersection of bulk RNA-seq data and scRNA-seq data. After consensus clustering of EGFR-negative LUAD into different clusters based on M2-TAM-based genes, we compared the prognosis, clinical features, estimate scores, immune infiltration, and checkpoint genes among the clusters. Next, we combined univariate Cox and LASSO regression analyses to establish an M2-TAM-based prognostic signature.</p><p><strong>Results: </strong>CCL20, HLA-DMA, HLA-DRB5, KLF4, and TMSB4X were verified as prognostic M2-like TAM-related genes by univariate Cox and LASSO regression analyses. IPS and TMB analyses revealed that the high-risk group responded better to common immunotherapy.</p><p><strong>Conclusion: </strong>The study shows the potential of the M2-like TAM-related gene signature in EGFR-negative LUAD, explores the immune landscape based on M2-like TAM-related genes, and predict immunotherapy response of patients with EGFR-negative LUAD, providing a new insight for individualized treatment.</p>","PeriodicalId":23338,"journal":{"name":"Thoracic Cancer","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260554/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the immune landscape and drug prediction of an M2 tumor-associated macrophage-related gene signature in EGFR-negative lung adenocarcinoma.\",\"authors\":\"Yajie Huang, Yaozhong Zhang, Xiaoyang Duan, Ran Hou, Qi Wang, Jian Shi\",\"doi\":\"10.1111/1759-7714.15375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Improving immunotherapy efficacy for EGFR-negative lung adenocarcinoma (LUAD) patients remains a critical challenge, and the therapeutic effect of immunotherapy is largely determined by the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the top-ranked immune infiltrating cells in the TME, and M2-TAMs exert potent roles in tumor promotion and chemotherapy resistance. An M2-TAM-based prognostic signature was constructed by integrative analysis of single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data to reveal the immune landscape and select drugs in EGFR-negative LUAD.</p><p><strong>Methods: </strong>M2-TAM-based biomarkers were obtained from the intersection of bulk RNA-seq data and scRNA-seq data. After consensus clustering of EGFR-negative LUAD into different clusters based on M2-TAM-based genes, we compared the prognosis, clinical features, estimate scores, immune infiltration, and checkpoint genes among the clusters. Next, we combined univariate Cox and LASSO regression analyses to establish an M2-TAM-based prognostic signature.</p><p><strong>Results: </strong>CCL20, HLA-DMA, HLA-DRB5, KLF4, and TMSB4X were verified as prognostic M2-like TAM-related genes by univariate Cox and LASSO regression analyses. IPS and TMB analyses revealed that the high-risk group responded better to common immunotherapy.</p><p><strong>Conclusion: </strong>The study shows the potential of the M2-like TAM-related gene signature in EGFR-negative LUAD, explores the immune landscape based on M2-like TAM-related genes, and predict immunotherapy response of patients with EGFR-negative LUAD, providing a new insight for individualized treatment.</p>\",\"PeriodicalId\":23338,\"journal\":{\"name\":\"Thoracic Cancer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260554/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thoracic Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/1759-7714.15375\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thoracic Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1759-7714.15375","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Exploring the immune landscape and drug prediction of an M2 tumor-associated macrophage-related gene signature in EGFR-negative lung adenocarcinoma.
Background: Improving immunotherapy efficacy for EGFR-negative lung adenocarcinoma (LUAD) patients remains a critical challenge, and the therapeutic effect of immunotherapy is largely determined by the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the top-ranked immune infiltrating cells in the TME, and M2-TAMs exert potent roles in tumor promotion and chemotherapy resistance. An M2-TAM-based prognostic signature was constructed by integrative analysis of single-cell RNA-seq (scRNA-seq) and bulk RNA-seq data to reveal the immune landscape and select drugs in EGFR-negative LUAD.
Methods: M2-TAM-based biomarkers were obtained from the intersection of bulk RNA-seq data and scRNA-seq data. After consensus clustering of EGFR-negative LUAD into different clusters based on M2-TAM-based genes, we compared the prognosis, clinical features, estimate scores, immune infiltration, and checkpoint genes among the clusters. Next, we combined univariate Cox and LASSO regression analyses to establish an M2-TAM-based prognostic signature.
Results: CCL20, HLA-DMA, HLA-DRB5, KLF4, and TMSB4X were verified as prognostic M2-like TAM-related genes by univariate Cox and LASSO regression analyses. IPS and TMB analyses revealed that the high-risk group responded better to common immunotherapy.
Conclusion: The study shows the potential of the M2-like TAM-related gene signature in EGFR-negative LUAD, explores the immune landscape based on M2-like TAM-related genes, and predict immunotherapy response of patients with EGFR-negative LUAD, providing a new insight for individualized treatment.
期刊介绍:
Thoracic Cancer aims to facilitate international collaboration and exchange of comprehensive and cutting-edge information on basic, translational, and applied clinical research in lung cancer, esophageal cancer, mediastinal cancer, breast cancer and other thoracic malignancies. Prevention, treatment and research relevant to Asia-Pacific is a focus area, but submissions from all regions are welcomed. The editors encourage contributions relevant to prevention, general thoracic surgery, medical oncology, radiology, radiation medicine, pathology, basic cancer research, as well as epidemiological and translational studies in thoracic cancer. Thoracic Cancer is the official publication of the Chinese Society of Lung Cancer, International Chinese Society of Thoracic Surgery and is endorsed by the Korean Association for the Study of Lung Cancer and the Hong Kong Cancer Therapy Society.
The Journal publishes a range of article types including: Editorials, Invited Reviews, Mini Reviews, Original Articles, Clinical Guidelines, Technological Notes, Imaging in thoracic cancer, Meeting Reports, Case Reports, Letters to the Editor, Commentaries, and Brief Reports.