用于原子探针数据科学的可查找、可访问、可互操作和可重用的 MATLAB 工具箱。

IF 2.9 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Martina Heller, Benedict Ott, Valentin Dalbauer, Peter Felfer
{"title":"用于原子探针数据科学的可查找、可访问、可互操作和可重用的 MATLAB 工具箱。","authors":"Martina Heller, Benedict Ott, Valentin Dalbauer, Peter Felfer","doi":"10.1093/mam/ozae031","DOIUrl":null,"url":null,"abstract":"<p><p>Atom probe tomography (APT) data analytics have traditionally been based on manual analytics by researchers. As newer atom probes together with focused ion beam-based specimen preparation have opened APT to many more materials, yielding much more complex mass spectra, building up a systematic understanding of the pathway from raw data to final interpretation has increasingly become important. This demands a system in which the data and treatment can be traced, ideally by any interested party. Such an approach of findable, accessible, interoperable, and reusable (FAIR) data and analysis policies is becoming increasingly important, not just in APT. In this paper, we present a toolbox, written in MATLAB, which allows the user to store the raw and processed data in a standardized FAIR format (hierarchical data format 5) and process the data in a largely scriptable environment to minimize manual user input. This allows for the experiment data to be interchanged without owner explanations and the analysis to be reproduced. We have devised a metadata scheme that is extensible to other experiments in the materials science domain. With this toolbox, collective knowledge can be built up, and a large number of data sets can be analyzed in a fully automated fashion.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A MATLAB Toolbox for Findable, Accessible, Interoperable, and Reusable Atom Probe Data Science.\",\"authors\":\"Martina Heller, Benedict Ott, Valentin Dalbauer, Peter Felfer\",\"doi\":\"10.1093/mam/ozae031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atom probe tomography (APT) data analytics have traditionally been based on manual analytics by researchers. As newer atom probes together with focused ion beam-based specimen preparation have opened APT to many more materials, yielding much more complex mass spectra, building up a systematic understanding of the pathway from raw data to final interpretation has increasingly become important. This demands a system in which the data and treatment can be traced, ideally by any interested party. Such an approach of findable, accessible, interoperable, and reusable (FAIR) data and analysis policies is becoming increasingly important, not just in APT. In this paper, we present a toolbox, written in MATLAB, which allows the user to store the raw and processed data in a standardized FAIR format (hierarchical data format 5) and process the data in a largely scriptable environment to minimize manual user input. This allows for the experiment data to be interchanged without owner explanations and the analysis to be reproduced. We have devised a metadata scheme that is extensible to other experiments in the materials science domain. With this toolbox, collective knowledge can be built up, and a large number of data sets can be analyzed in a fully automated fashion.</p>\",\"PeriodicalId\":18625,\"journal\":{\"name\":\"Microscopy and Microanalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy and Microanalysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/mam/ozae031\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

原子探针层析成像(APT)数据分析传统上一直基于研究人员的手动分析。随着新型原子探针和基于聚焦离子束的试样制备技术的发展,原子探针层析技术已经可以应用于更多的材料,并产生更为复杂的质谱,因此建立对从原始数据到最终解释的整个过程的系统性理解变得越来越重要。这就要求建立一个可以追踪数据和处理过程的系统,理想情况下,任何感兴趣的人都可以进行追踪。这种可查找、可访问、可互操作、可重用(FAIR)的数据和分析政策正变得越来越重要,不仅仅是在 APT 中。在本文中,我们介绍了一个用 MATLAB 编写的工具箱,它允许用户以标准化的 FAIR 格式(分层数据格式 5)存储原始数据和处理过的数据,并在一个基本可编写脚本的环境中处理数据,以尽量减少用户的手动输入。这样,实验数据就可以相互交换,无需所有者解释,分析结果也可以重现。我们设计的元数据方案可扩展到材料科学领域的其他实验。有了这个工具箱,就可以建立集体知识,并以完全自动化的方式分析大量数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A MATLAB Toolbox for Findable, Accessible, Interoperable, and Reusable Atom Probe Data Science.

Atom probe tomography (APT) data analytics have traditionally been based on manual analytics by researchers. As newer atom probes together with focused ion beam-based specimen preparation have opened APT to many more materials, yielding much more complex mass spectra, building up a systematic understanding of the pathway from raw data to final interpretation has increasingly become important. This demands a system in which the data and treatment can be traced, ideally by any interested party. Such an approach of findable, accessible, interoperable, and reusable (FAIR) data and analysis policies is becoming increasingly important, not just in APT. In this paper, we present a toolbox, written in MATLAB, which allows the user to store the raw and processed data in a standardized FAIR format (hierarchical data format 5) and process the data in a largely scriptable environment to minimize manual user input. This allows for the experiment data to be interchanged without owner explanations and the analysis to be reproduced. We have devised a metadata scheme that is extensible to other experiments in the materials science domain. With this toolbox, collective knowledge can be built up, and a large number of data sets can be analyzed in a fully automated fashion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信