Xiaokang Huo, Yumeng Zhou, Ning Zhu, Xiaopeng Guo, Wen Luo, Yan Zhuang, Feifan Leng, Yonggang Wang
{"title":"土壤有机质和总氮重塑根相关细菌群落并协同改变拟南芥的抗逆性","authors":"Xiaokang Huo, Yumeng Zhou, Ning Zhu, Xiaopeng Guo, Wen Luo, Yan Zhuang, Feifan Leng, Yonggang Wang","doi":"10.1007/s12033-024-01217-3","DOIUrl":null,"url":null,"abstract":"<p><p>The stress resistance of medicinal plants is essential to the accumulation of pharmacological active ingredients, but the regulation mechanism of biological factors and abiotic factors on medicinal plants is still unclear. To investigate the mechanism of soil nutrient and microecology on the stress resistance of C. pilosula, rhizosphere soil and roots were collected across the four seasons in Minxian, Gansu, and their physicochemical properties, as well as root-associated microorganisms, were examined. The results showed that the bacterial α-diversity indexes increased in the endosphere and rhizosphere from summer to autumn. At the same time, the community composition and function changed considerably. The stability of the endophytic bacterial community was higher than that rhizospheric bacteria, and the complexity of the endophytic bacterial community was lower than rhizospheric bacteria. Soil organic matter (OM), water content (WC), total potassium (TK), and total nitrogen (TN) have been identified as the key factors affecting bacterial community diversity and stress resistance of C. pilosula. WC, TN, and OM showed significant differences from summer to autumn (P < 0.5). Four key soil physiochemical factors changed significantly between seasons (P < 0.01). TN and OM change the stress resistance of C. pilosula mainly by changing the activity of antioxidant enzymes. Changes of OM and endophytic bacterial diversity affect the accumulation of soluble sugars to alter stress resistance. These four key soil physicochemical factors significantly influenced the diversity of endophytic bacteria. WC and OM were identified as the most important factors for endophytic and rhizospheric bacteria, respectively. This study provided the research basis for the scientific planting of C. pilosula.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"2545-2561"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil Organic Matter and Total Nitrogen Reshaped Root-Associated Bacteria Community and Synergistic Change the Stress Resistance of Codonopsis pilosula.\",\"authors\":\"Xiaokang Huo, Yumeng Zhou, Ning Zhu, Xiaopeng Guo, Wen Luo, Yan Zhuang, Feifan Leng, Yonggang Wang\",\"doi\":\"10.1007/s12033-024-01217-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The stress resistance of medicinal plants is essential to the accumulation of pharmacological active ingredients, but the regulation mechanism of biological factors and abiotic factors on medicinal plants is still unclear. To investigate the mechanism of soil nutrient and microecology on the stress resistance of C. pilosula, rhizosphere soil and roots were collected across the four seasons in Minxian, Gansu, and their physicochemical properties, as well as root-associated microorganisms, were examined. The results showed that the bacterial α-diversity indexes increased in the endosphere and rhizosphere from summer to autumn. At the same time, the community composition and function changed considerably. The stability of the endophytic bacterial community was higher than that rhizospheric bacteria, and the complexity of the endophytic bacterial community was lower than rhizospheric bacteria. Soil organic matter (OM), water content (WC), total potassium (TK), and total nitrogen (TN) have been identified as the key factors affecting bacterial community diversity and stress resistance of C. pilosula. WC, TN, and OM showed significant differences from summer to autumn (P < 0.5). Four key soil physiochemical factors changed significantly between seasons (P < 0.01). TN and OM change the stress resistance of C. pilosula mainly by changing the activity of antioxidant enzymes. Changes of OM and endophytic bacterial diversity affect the accumulation of soluble sugars to alter stress resistance. These four key soil physicochemical factors significantly influenced the diversity of endophytic bacteria. WC and OM were identified as the most important factors for endophytic and rhizospheric bacteria, respectively. This study provided the research basis for the scientific planting of C. pilosula.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"2545-2561\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-024-01217-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01217-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
药用植物的抗逆性是药理活性成分积累的关键,但生物因子和非生物因子对药用植物的调控机制尚不清楚。为探讨土壤养分和微生态对茜草抗逆性的影响机制,研究人员在甘肃岷县采集了茜草四季根圈土壤和根系,并对其理化性质和根系相关微生物进行了研究。结果表明,从夏季到秋季,内圈和根圈的细菌α-多样性指数均有所增加。同时,群落组成和功能也发生了很大变化。内生细菌群落的稳定性高于根瘤菌群落,内生细菌群落的复杂性低于根瘤菌群落。土壤有机质(OM)、含水量(WC)、总钾(TK)和总氮(TN)被认为是影响细菌群落多样性和 C. pilosula 抗逆性的关键因素。土壤水分(WC)、总钾(TK)和总氮(TN)在夏季和秋季之间存在显著差异(P
Soil Organic Matter and Total Nitrogen Reshaped Root-Associated Bacteria Community and Synergistic Change the Stress Resistance of Codonopsis pilosula.
The stress resistance of medicinal plants is essential to the accumulation of pharmacological active ingredients, but the regulation mechanism of biological factors and abiotic factors on medicinal plants is still unclear. To investigate the mechanism of soil nutrient and microecology on the stress resistance of C. pilosula, rhizosphere soil and roots were collected across the four seasons in Minxian, Gansu, and their physicochemical properties, as well as root-associated microorganisms, were examined. The results showed that the bacterial α-diversity indexes increased in the endosphere and rhizosphere from summer to autumn. At the same time, the community composition and function changed considerably. The stability of the endophytic bacterial community was higher than that rhizospheric bacteria, and the complexity of the endophytic bacterial community was lower than rhizospheric bacteria. Soil organic matter (OM), water content (WC), total potassium (TK), and total nitrogen (TN) have been identified as the key factors affecting bacterial community diversity and stress resistance of C. pilosula. WC, TN, and OM showed significant differences from summer to autumn (P < 0.5). Four key soil physiochemical factors changed significantly between seasons (P < 0.01). TN and OM change the stress resistance of C. pilosula mainly by changing the activity of antioxidant enzymes. Changes of OM and endophytic bacterial diversity affect the accumulation of soluble sugars to alter stress resistance. These four key soil physicochemical factors significantly influenced the diversity of endophytic bacteria. WC and OM were identified as the most important factors for endophytic and rhizospheric bacteria, respectively. This study provided the research basis for the scientific planting of C. pilosula.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.