Ileana Mateizel, Annalisa Racca, Eleni Aligianni, Elisa Distasi, Yoni Baert, Ingrid Segers, Danijel Jankovic, Celine Schoemans, Koen Wouters, Herman Tournaye, Neelke De Munck
{"title":"优化精子选择:一种用于分离具有低 DNA 破碎指数的进步运动精子的高效装置。","authors":"Ileana Mateizel, Annalisa Racca, Eleni Aligianni, Elisa Distasi, Yoni Baert, Ingrid Segers, Danijel Jankovic, Celine Schoemans, Koen Wouters, Herman Tournaye, Neelke De Munck","doi":"10.1007/s10815-024-03168-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To identify the sperm preparation procedure that selects the best sperm population for medically assisted reproduction.</p><p><strong>Methods: </strong>Prospective observational study comparing the effect of four different sperm selection procedures on various semen parameters. Unused raw semen after routine diagnostic analysis was split in four fractions and processed by four different methods: (1) density gradient centrifugation (DGC), (2) sperm wash (SW), (3) DGC followed by magnetic activated cell sorting (MACS), and (4) using a sperm separation device (SSD). Each fraction was analyzed for progressive motility, morphology, acrosome index (AI), and DNA fragmentation index (DFI).</p><p><strong>Results: </strong>With DGC as standard of care in intraclass correlation coefficient analysis, only SSD was in strong disagreement regarding progressive motility and DFI [0.26, 95%CI (- 0.2, 0.58), and 0.17, 95%CI (- 0.19, 0.45), respectively]. When controlling for abstinence duration, DFI was significantly lower after both MACS and SSD compared to DGC [- 0.27%, 95%CI (- 0.47, - 0.06), p = 0.01, and - 0.6%, 95%CI (- 0.80, - 0.41), p < 0.001, respectively]. Further comparisons between SSD and MACS indicate significantly less apoptotic cells [Median (IQR) 4 (5), 95%CI (4.1, - 6.8) vs Median (IQR) 5 (8), 95%CI (4.9, - 9.2), p < 0.001, respectively] and dead cells [Median (IQR) 9.5 (23.3), 95%CI (13.2, - 22.4) vs Median (IQR) 22 (28), 95%CI (23.1, - 36.8), p < 0.001, respectively] in the SSD group.</p><p><strong>Conclusion: </strong>The selection of a population of highly motile spermatozoa with less damaged DNA from unprocessed semen is ideally performed with SSD. Question remains whether this method improves the embryological outcomes in the IVF laboratory.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339219/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimized sperm selection: a highly efficient device for the isolation of progressive motile sperm with low DNA fragmentation index.\",\"authors\":\"Ileana Mateizel, Annalisa Racca, Eleni Aligianni, Elisa Distasi, Yoni Baert, Ingrid Segers, Danijel Jankovic, Celine Schoemans, Koen Wouters, Herman Tournaye, Neelke De Munck\",\"doi\":\"10.1007/s10815-024-03168-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To identify the sperm preparation procedure that selects the best sperm population for medically assisted reproduction.</p><p><strong>Methods: </strong>Prospective observational study comparing the effect of four different sperm selection procedures on various semen parameters. Unused raw semen after routine diagnostic analysis was split in four fractions and processed by four different methods: (1) density gradient centrifugation (DGC), (2) sperm wash (SW), (3) DGC followed by magnetic activated cell sorting (MACS), and (4) using a sperm separation device (SSD). Each fraction was analyzed for progressive motility, morphology, acrosome index (AI), and DNA fragmentation index (DFI).</p><p><strong>Results: </strong>With DGC as standard of care in intraclass correlation coefficient analysis, only SSD was in strong disagreement regarding progressive motility and DFI [0.26, 95%CI (- 0.2, 0.58), and 0.17, 95%CI (- 0.19, 0.45), respectively]. When controlling for abstinence duration, DFI was significantly lower after both MACS and SSD compared to DGC [- 0.27%, 95%CI (- 0.47, - 0.06), p = 0.01, and - 0.6%, 95%CI (- 0.80, - 0.41), p < 0.001, respectively]. Further comparisons between SSD and MACS indicate significantly less apoptotic cells [Median (IQR) 4 (5), 95%CI (4.1, - 6.8) vs Median (IQR) 5 (8), 95%CI (4.9, - 9.2), p < 0.001, respectively] and dead cells [Median (IQR) 9.5 (23.3), 95%CI (13.2, - 22.4) vs Median (IQR) 22 (28), 95%CI (23.1, - 36.8), p < 0.001, respectively] in the SSD group.</p><p><strong>Conclusion: </strong>The selection of a population of highly motile spermatozoa with less damaged DNA from unprocessed semen is ideally performed with SSD. Question remains whether this method improves the embryological outcomes in the IVF laboratory.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339219/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10815-024-03168-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10815-024-03168-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimized sperm selection: a highly efficient device for the isolation of progressive motile sperm with low DNA fragmentation index.
Purpose: To identify the sperm preparation procedure that selects the best sperm population for medically assisted reproduction.
Methods: Prospective observational study comparing the effect of four different sperm selection procedures on various semen parameters. Unused raw semen after routine diagnostic analysis was split in four fractions and processed by four different methods: (1) density gradient centrifugation (DGC), (2) sperm wash (SW), (3) DGC followed by magnetic activated cell sorting (MACS), and (4) using a sperm separation device (SSD). Each fraction was analyzed for progressive motility, morphology, acrosome index (AI), and DNA fragmentation index (DFI).
Results: With DGC as standard of care in intraclass correlation coefficient analysis, only SSD was in strong disagreement regarding progressive motility and DFI [0.26, 95%CI (- 0.2, 0.58), and 0.17, 95%CI (- 0.19, 0.45), respectively]. When controlling for abstinence duration, DFI was significantly lower after both MACS and SSD compared to DGC [- 0.27%, 95%CI (- 0.47, - 0.06), p = 0.01, and - 0.6%, 95%CI (- 0.80, - 0.41), p < 0.001, respectively]. Further comparisons between SSD and MACS indicate significantly less apoptotic cells [Median (IQR) 4 (5), 95%CI (4.1, - 6.8) vs Median (IQR) 5 (8), 95%CI (4.9, - 9.2), p < 0.001, respectively] and dead cells [Median (IQR) 9.5 (23.3), 95%CI (13.2, - 22.4) vs Median (IQR) 22 (28), 95%CI (23.1, - 36.8), p < 0.001, respectively] in the SSD group.
Conclusion: The selection of a population of highly motile spermatozoa with less damaged DNA from unprocessed semen is ideally performed with SSD. Question remains whether this method improves the embryological outcomes in the IVF laboratory.