{"title":"2023 年 ET&C 最佳论文。","authors":"","doi":"10.1002/etc.5933","DOIUrl":null,"url":null,"abstract":"<p>WINNER OF THE 2023 BEST PAPER AWARD:</p><p>Genes-to-Pathways Species Conservation Analysis: Enabling the Exploration of Conservation of Biological Pathways and Processes Across Species</p><p><i>Claudia Rivetti, Jade Houghton, Danilo Basili, Geoff Hodges, and Bruno Campos</i></p><p>DOI:doi.org/10.1002/etc.5600</p><p>The development of the Genes-to-Pathways Species Conservation Analysis (G2P-SCAN), a novel R package designed to enhance the understanding of cross-species conservation of biological pathways, is a major leap forward towards integrating computational biology approaches into safety assessments. By integrating data from multiple databases and focusing on gene orthologs, protein families, entities, and reactions, G2P-SCAN offers a comprehensive tool for analyzing the conservation of biological processes across various species. This methodology supports the reduction of animal testing by enabling more accurate species extrapolation and risk assessment.</p><p>The paper's significance lies in its potential to improve the accessibility and synthesis of genomic data, thus facilitating the application of mechanistically based data in ecological risk assessments. The authors demonstrate the utility of G2P-SCAN through five case studies, validating its effectiveness in identifying conservation and susceptibility at the pathway level across different species. This work not only advances scientific understanding but also aligns with global regulatory shifts towards new approach methodologies (NAMs), promoting the use of computational and cell-based approaches in safety assessments.</p><p>REFERENCE</p><p>Rivetti, C., Houghton, J., Basili, D., Hodges, G., & Campos, B. (2023), Genes-to-pathways species conservation analysis: Enabling the exploration of conservation of biological pathways and processes across species. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1152–1166.</p><p>Jana Asselmann</p><p><i>Ghent University</i></p><p><i>Ghent, Belgium</i></p><p></p><p>Best Paper Award winner Claudia Rivetti.</p><p></p><p>Models used to predict chemical bioaccumulation in fish from in vitro biotransformation rates require accurate estimates of blood–water partitioning and chemical volume of distribution</p><p><i>Leslie J. Saunders and John W. Nichols</i></p><p>DOI:10.1002/etc.5503</p><p></p><p>Arsenic and mercury distribution in an aquatic food chain: Importance of femtoplankton and picoplankton filtration fractions</p><p><i>Abdullah M. Alowaifeer, Scott Clingenpeel, Jinjun Kan, Patricia E. Bigelow, Masafumi Yoshinaga, Brian Bothner, and Timothy R. McDermott</i></p><p>DOI:10.1002/etc.5516</p><p></p><p>Sublethal exposure of per- and polyfluoroalkyl substances of varying chain length and polar functionality results in distinct metabolic responses in <i>Daphnia magna</i></p><p><i>Lisa M. Labine, Erico A. Oliveira Pereira, Sonya Kleywegt, Karl J. Jobst, André J. Simpson, and Myrna J. Simpson</i></p><p>DOI:10.1002/etc.5517</p><p></p><p>Prioritizing pesticides of potential concern and identifying potential mixture effects in great lakes tributaries using passive samplers</p><p><i>Luke C. Loken, Steven R. Corsi, David A. Alvarez, Gerald T. Ankley, Austin K. Baldwin, Brett R. Blackwell, Laura A. De Cicco, Michele A. Nott, Samantha K. Oliver, and Daniel L. Villeneuve</i></p><p>DOI:10.1002/etc.5491</p><p></p><p>Development of a new polar organic chemical integrative sampler for 1,4-dioxane using silicone membrane as a diffusion barrier</p><p><i>Kazushi Noro, Satoshi Endo, Daisuke Inoue, Natsumi Suzuki, Hiroshi Kameoka, Junko Ono, Satoshi Nakamura, and Yoshinori Yabuki</i></p><p>DOI:10.1002/etc.5518</p><p></p><p>Combining in vitro and in silico new approach methods to investigate type 3 iodothyronine deiodinase chemical inhibition across species</p><p><i>Sally A. Mayasich, Michael R. Goldsmith, Kali Z. Mattingly, and Carlie A. LaLone</i></p><p>DOI:10.1002/etc.5591</p><p></p><p>Salmonid pituitary cells as a test system for identifying endocrine-disrupting compounds</p><p><i>Louisa Harding, Irvin R. Schultz, Graham Young, and Penny Swanson</i></p><p>DOI:10.1002/etc.5644</p><p></p><p>Changes in temperature alter the toxicity of polycyclic aromatic compounds to American lobster (<i>Homarus americanus</i>) larvae</p><p><i>Danielle Philibert, Sarah Marteinson, and Benjamin de Jourdan</i></p><p>DOI:10.1002/etc.5719</p><p></p><p>Application of ion mobility spectrometry–mass spectrometry for compositional characterization and fingerprinting of a library of diverse crude oil samples</p><p><i>Alexandra C. Cordova, James N. Dodds, Han-Hsuan D. Tsai, Dillon T. Lloyd, Alina T. Roman-Hubers, Fred A. Wright, Weihsueh A. Chiu, Thomas J. McDonald, Rui Zhu, Galen Newman, and Ivan Rusyn</i></p><p>DOI:10.1002/etc.5727</p><p></p><p>Metal mixture toxicity of Ni, Cu, and Zn in freshwater algal communities and the correlation of single-species sensitivities among single metals: A comparative analysis</p><p><i>Andreas Fettweis, Simon Hansul, Karel De Schamphelaere, and Erik Smolders</i></p><p>DOI:10.1002/etc.5735</p><p>Alowaifeer, A. M., Clingenpeel, S., Kan, J., Bigelow, P. E., Yoshinaga, M., Bothner, B., & McDermott, T. R. (2023). Arsenic and mercury distribution in an aquatic food chain: Importance of femtoplankton and picoplankton filtration fractions. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 225–241. https://doi.org/10.1002/etc.5516</p><p>Brix, K. V., Tear, L., DeForest, D. K., & Adams, W. J. (2023). Development of multiple linear regression models for predicting chronic iron toxicity to aquatic organisms. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1386–1400. https://doi.org/10.1002/etc.5623</p><p>Chung, J., Lee, J.-H., Hwang, D.-S., Park, D.-H., An, Y.-J., Yeom, D.-H., Park, T.-J., & Choi, J. (2023). Comparison of the estimation methods from acute to chronic biotic ligand model-based predicted no-effect concentrations for nickel in freshwater species. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 914–927. https://doi.org/10.1002/etc.5572</p><p>Cordova, A. C., Dodds, J. N., Tsai, H.-H. D., Lloyd, D. T., Roman-Hubers, A. T., Wright, F. A., Chiu, W. A., McDonald, T. J., Zhu, R., Newman, G., & Rusyn, I. (2023). Application of ion mobility spectrometry–mass spectrometry for compositional characterization and fingerprinting of a library of diverse crude oil samples. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2336–2349. https://doi.org/10.1002/etc.5727</p><p>Doering, J. A., Tillitt, D. E., & Wiseman, S. (2023). Reevaluation of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalency factors for dioxin-like polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and polychlorinated biphenyls for fishes. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2215–2228. https://doi.org/10.1002/etc.5690</p><p>Fettweis, A., Hansul, S., Schamphelaere, K. D., & Smolders, E. (2023). Metal mixture toxicity of Ni, Cu, and Zn in freshwater algal communities and the correlation of single-species sensitivities among single metals: A comparative analysis. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2666–2683. https://doi.org/10.1002/etc.5735</p><p>Harding, L., Schultz, I. R., Young, G., & Swanson, P. (2023). Salmonid pituitary cells as a test system for identifying endocrine-disrupting compounds. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1730–1742. https://doi.org/10.1002/etc.5644</p><p>Ji, X., Arenas, C. E. D., Perez, A. S. C., Giesy, J. P., & Brinkmann, M. (2023). Predicting the kinetics of resupply of organic pollutants from sediments using diffusive gradients in thin film samplers and their bioavailability to aquatic invertebrates. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1696–1708. https://doi.org/10.1002/etc.5681</p><p>Jeninga, A. J., Wallace, Z., Victoria, S., Harrahy, E., & King-Heiden, T. C. (2023). Chronic exposure to environmentally relevant concentrations of imidacloprid impact survival and ecologically relevant behaviors of fathead minnow larvae. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2184–2192. https://doi.org/10.1002/etc.5710</p><p>Kast, C., Droz, B., & Kilchenmann, V. (2023). Toxicity of coumaphos residues in beeswax foundation to the honey bee brood. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1816–1822. https://doi.org/10.1002/etc.5645</p><p>Labine, L. M., Oliveira Pereira, E. A., Kleywegt, S., Jobst, K. J., Simpson, A. J., & Simpson, M. J. (2023). Sublethal exposure of per- and polyfluoroalkyl substances of varying chain length and polar functionality results in distinct metabolic responses in <i>Daphnia magna</i>. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 242–256. https://doi.org/10.1002/etc.5517</p><p>Loken, L. C., Corsi, S. R., Alvarez, D. A., Ankley, G. T., Baldwin, A. K., Blackwell, B. R., De Cicco, L. A., Nott, M. A., Oliver, S. K., & Villeneuve, D. L. (2023). Prioritizing pesticides of potential concern and identifying potential mixture effects in Great Lakes tributaries using passive samplers. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 340–366. https://doi.org/10.1002/etc.5491</p><p>Mayasich, S. A., Goldsmith, M. R., Mattingly, K. Z., & LaLone, C. A. (2023). Combining in vitro and in silico new approach methods to investigate type 3 iodothyronine deiodinase chemical inhibition across species. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1032–1048. https://doi.org/10.1002/etc.5591</p><p>Noro, K., Endo, S., Inoue, D., Suzuki, N., Kameoka, H., Ono, J., Nakamura, S., & Yabuki, Y. (2023). Development of a new polar organic chemical integrative sampler for 1,4-dioxane using silicone membrane as a diffusion barrier. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 296–302. https://doi.org/10.1002/etc.5518</p><p>Philibert, D., Marteinson, S., & de Jourdan, B. (2023). Changes in temperature alter the toxicity of polycyclic aromatic compounds to American lobster (<i>Homarus americanus</i>) larvae. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2389–2399. https://doi.org/10.1002/etc.5719</p><p>Rivetti, C., Houghton, J., Basili, D., Hodges, G., & Campos, B. (2023). Genes-to-pathways species conservation analysis: Enabling the exploration of conservation of biological pathways and processes across species. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1152–1166. https://doi.org/10.1002/etc.5600</p><p>Saunders, L. J., & Nichols, J. W. (2023). Models used to predict chemical bioaccumulation in fish from in vitro biotransformation rates require accurate estimates of blood–water partitioning and chemical volume of distribution. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 33–45. https://doi.org/10.1002/etc.5503</p><p>Schöfer, N., Ackermann, J., Hoheneder, J., Hofferberth, J., & Ruther, J. (2023). Sublethal effects of four insecticides targeting cholinergic neurons on partner and host finding in the parasitic wasp <i>Nasonia vitripennis</i>. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2400–2411. https://doi.org/10.1002/etc.5721</p><p>Suski, J. G., Chanov, M. K., Heron, C. G., Field, J. A., & Salice, C. J. (2023). Ecotoxicity and accumulation of perfluorononanoic acid in the fathead minnow (<i>Pimephales promelas</i>) and an approach to developing protective thresholds in the aquatic environment through species sensitivity distribution. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2229–2236. https://doi.org/10.1002/etc.5692</p><p>Trapp, S., Shi, J., & Zeng, L. (2023). Generic model for plant uptake of ionizable pharmaceuticals and personal care products. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 793–804. https://doi.org/10.1002/etc.5582</p><p>Wagner-Deyriès, M., Varignier, L., Revel, M., Delhaye, T., Rondeau, D., Coutellec, M.-A., & McCairns, R. J. S. (2023). Variation of tolerance to isothiazolinones among <i>Daphnia pulex</i> clones. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 805–814. https://doi.org/10.1002/etc.5564</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":"43 7","pages":"1463-1465"},"PeriodicalIF":3.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/etc.5933","citationCount":"0","resultStr":"{\"title\":\"ET&C Best Paper of 2023\",\"authors\":\"\",\"doi\":\"10.1002/etc.5933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>WINNER OF THE 2023 BEST PAPER AWARD:</p><p>Genes-to-Pathways Species Conservation Analysis: Enabling the Exploration of Conservation of Biological Pathways and Processes Across Species</p><p><i>Claudia Rivetti, Jade Houghton, Danilo Basili, Geoff Hodges, and Bruno Campos</i></p><p>DOI:doi.org/10.1002/etc.5600</p><p>The development of the Genes-to-Pathways Species Conservation Analysis (G2P-SCAN), a novel R package designed to enhance the understanding of cross-species conservation of biological pathways, is a major leap forward towards integrating computational biology approaches into safety assessments. By integrating data from multiple databases and focusing on gene orthologs, protein families, entities, and reactions, G2P-SCAN offers a comprehensive tool for analyzing the conservation of biological processes across various species. This methodology supports the reduction of animal testing by enabling more accurate species extrapolation and risk assessment.</p><p>The paper's significance lies in its potential to improve the accessibility and synthesis of genomic data, thus facilitating the application of mechanistically based data in ecological risk assessments. The authors demonstrate the utility of G2P-SCAN through five case studies, validating its effectiveness in identifying conservation and susceptibility at the pathway level across different species. This work not only advances scientific understanding but also aligns with global regulatory shifts towards new approach methodologies (NAMs), promoting the use of computational and cell-based approaches in safety assessments.</p><p>REFERENCE</p><p>Rivetti, C., Houghton, J., Basili, D., Hodges, G., & Campos, B. (2023), Genes-to-pathways species conservation analysis: Enabling the exploration of conservation of biological pathways and processes across species. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1152–1166.</p><p>Jana Asselmann</p><p><i>Ghent University</i></p><p><i>Ghent, Belgium</i></p><p></p><p>Best Paper Award winner Claudia Rivetti.</p><p></p><p>Models used to predict chemical bioaccumulation in fish from in vitro biotransformation rates require accurate estimates of blood–water partitioning and chemical volume of distribution</p><p><i>Leslie J. Saunders and John W. Nichols</i></p><p>DOI:10.1002/etc.5503</p><p></p><p>Arsenic and mercury distribution in an aquatic food chain: Importance of femtoplankton and picoplankton filtration fractions</p><p><i>Abdullah M. Alowaifeer, Scott Clingenpeel, Jinjun Kan, Patricia E. Bigelow, Masafumi Yoshinaga, Brian Bothner, and Timothy R. McDermott</i></p><p>DOI:10.1002/etc.5516</p><p></p><p>Sublethal exposure of per- and polyfluoroalkyl substances of varying chain length and polar functionality results in distinct metabolic responses in <i>Daphnia magna</i></p><p><i>Lisa M. Labine, Erico A. Oliveira Pereira, Sonya Kleywegt, Karl J. Jobst, André J. Simpson, and Myrna J. Simpson</i></p><p>DOI:10.1002/etc.5517</p><p></p><p>Prioritizing pesticides of potential concern and identifying potential mixture effects in great lakes tributaries using passive samplers</p><p><i>Luke C. Loken, Steven R. Corsi, David A. Alvarez, Gerald T. Ankley, Austin K. Baldwin, Brett R. Blackwell, Laura A. De Cicco, Michele A. Nott, Samantha K. Oliver, and Daniel L. Villeneuve</i></p><p>DOI:10.1002/etc.5491</p><p></p><p>Development of a new polar organic chemical integrative sampler for 1,4-dioxane using silicone membrane as a diffusion barrier</p><p><i>Kazushi Noro, Satoshi Endo, Daisuke Inoue, Natsumi Suzuki, Hiroshi Kameoka, Junko Ono, Satoshi Nakamura, and Yoshinori Yabuki</i></p><p>DOI:10.1002/etc.5518</p><p></p><p>Combining in vitro and in silico new approach methods to investigate type 3 iodothyronine deiodinase chemical inhibition across species</p><p><i>Sally A. Mayasich, Michael R. Goldsmith, Kali Z. Mattingly, and Carlie A. LaLone</i></p><p>DOI:10.1002/etc.5591</p><p></p><p>Salmonid pituitary cells as a test system for identifying endocrine-disrupting compounds</p><p><i>Louisa Harding, Irvin R. Schultz, Graham Young, and Penny Swanson</i></p><p>DOI:10.1002/etc.5644</p><p></p><p>Changes in temperature alter the toxicity of polycyclic aromatic compounds to American lobster (<i>Homarus americanus</i>) larvae</p><p><i>Danielle Philibert, Sarah Marteinson, and Benjamin de Jourdan</i></p><p>DOI:10.1002/etc.5719</p><p></p><p>Application of ion mobility spectrometry–mass spectrometry for compositional characterization and fingerprinting of a library of diverse crude oil samples</p><p><i>Alexandra C. Cordova, James N. Dodds, Han-Hsuan D. Tsai, Dillon T. Lloyd, Alina T. Roman-Hubers, Fred A. Wright, Weihsueh A. Chiu, Thomas J. McDonald, Rui Zhu, Galen Newman, and Ivan Rusyn</i></p><p>DOI:10.1002/etc.5727</p><p></p><p>Metal mixture toxicity of Ni, Cu, and Zn in freshwater algal communities and the correlation of single-species sensitivities among single metals: A comparative analysis</p><p><i>Andreas Fettweis, Simon Hansul, Karel De Schamphelaere, and Erik Smolders</i></p><p>DOI:10.1002/etc.5735</p><p>Alowaifeer, A. M., Clingenpeel, S., Kan, J., Bigelow, P. E., Yoshinaga, M., Bothner, B., & McDermott, T. R. (2023). Arsenic and mercury distribution in an aquatic food chain: Importance of femtoplankton and picoplankton filtration fractions. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 225–241. https://doi.org/10.1002/etc.5516</p><p>Brix, K. V., Tear, L., DeForest, D. K., & Adams, W. J. (2023). Development of multiple linear regression models for predicting chronic iron toxicity to aquatic organisms. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1386–1400. https://doi.org/10.1002/etc.5623</p><p>Chung, J., Lee, J.-H., Hwang, D.-S., Park, D.-H., An, Y.-J., Yeom, D.-H., Park, T.-J., & Choi, J. (2023). Comparison of the estimation methods from acute to chronic biotic ligand model-based predicted no-effect concentrations for nickel in freshwater species. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 914–927. https://doi.org/10.1002/etc.5572</p><p>Cordova, A. C., Dodds, J. N., Tsai, H.-H. D., Lloyd, D. T., Roman-Hubers, A. T., Wright, F. A., Chiu, W. A., McDonald, T. J., Zhu, R., Newman, G., & Rusyn, I. (2023). Application of ion mobility spectrometry–mass spectrometry for compositional characterization and fingerprinting of a library of diverse crude oil samples. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2336–2349. https://doi.org/10.1002/etc.5727</p><p>Doering, J. A., Tillitt, D. E., & Wiseman, S. (2023). Reevaluation of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalency factors for dioxin-like polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and polychlorinated biphenyls for fishes. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2215–2228. https://doi.org/10.1002/etc.5690</p><p>Fettweis, A., Hansul, S., Schamphelaere, K. D., & Smolders, E. (2023). Metal mixture toxicity of Ni, Cu, and Zn in freshwater algal communities and the correlation of single-species sensitivities among single metals: A comparative analysis. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2666–2683. https://doi.org/10.1002/etc.5735</p><p>Harding, L., Schultz, I. R., Young, G., & Swanson, P. (2023). Salmonid pituitary cells as a test system for identifying endocrine-disrupting compounds. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1730–1742. https://doi.org/10.1002/etc.5644</p><p>Ji, X., Arenas, C. E. D., Perez, A. S. C., Giesy, J. P., & Brinkmann, M. (2023). Predicting the kinetics of resupply of organic pollutants from sediments using diffusive gradients in thin film samplers and their bioavailability to aquatic invertebrates. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1696–1708. https://doi.org/10.1002/etc.5681</p><p>Jeninga, A. J., Wallace, Z., Victoria, S., Harrahy, E., & King-Heiden, T. C. (2023). Chronic exposure to environmentally relevant concentrations of imidacloprid impact survival and ecologically relevant behaviors of fathead minnow larvae. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2184–2192. https://doi.org/10.1002/etc.5710</p><p>Kast, C., Droz, B., & Kilchenmann, V. (2023). Toxicity of coumaphos residues in beeswax foundation to the honey bee brood. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1816–1822. https://doi.org/10.1002/etc.5645</p><p>Labine, L. M., Oliveira Pereira, E. A., Kleywegt, S., Jobst, K. J., Simpson, A. J., & Simpson, M. J. (2023). Sublethal exposure of per- and polyfluoroalkyl substances of varying chain length and polar functionality results in distinct metabolic responses in <i>Daphnia magna</i>. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 242–256. https://doi.org/10.1002/etc.5517</p><p>Loken, L. C., Corsi, S. R., Alvarez, D. A., Ankley, G. T., Baldwin, A. K., Blackwell, B. R., De Cicco, L. A., Nott, M. A., Oliver, S. K., & Villeneuve, D. L. (2023). Prioritizing pesticides of potential concern and identifying potential mixture effects in Great Lakes tributaries using passive samplers. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 340–366. https://doi.org/10.1002/etc.5491</p><p>Mayasich, S. A., Goldsmith, M. R., Mattingly, K. Z., & LaLone, C. A. (2023). Combining in vitro and in silico new approach methods to investigate type 3 iodothyronine deiodinase chemical inhibition across species. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1032–1048. https://doi.org/10.1002/etc.5591</p><p>Noro, K., Endo, S., Inoue, D., Suzuki, N., Kameoka, H., Ono, J., Nakamura, S., & Yabuki, Y. (2023). Development of a new polar organic chemical integrative sampler for 1,4-dioxane using silicone membrane as a diffusion barrier. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 296–302. https://doi.org/10.1002/etc.5518</p><p>Philibert, D., Marteinson, S., & de Jourdan, B. (2023). Changes in temperature alter the toxicity of polycyclic aromatic compounds to American lobster (<i>Homarus americanus</i>) larvae. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2389–2399. https://doi.org/10.1002/etc.5719</p><p>Rivetti, C., Houghton, J., Basili, D., Hodges, G., & Campos, B. (2023). Genes-to-pathways species conservation analysis: Enabling the exploration of conservation of biological pathways and processes across species. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 1152–1166. https://doi.org/10.1002/etc.5600</p><p>Saunders, L. J., & Nichols, J. W. (2023). Models used to predict chemical bioaccumulation in fish from in vitro biotransformation rates require accurate estimates of blood–water partitioning and chemical volume of distribution. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 33–45. https://doi.org/10.1002/etc.5503</p><p>Schöfer, N., Ackermann, J., Hoheneder, J., Hofferberth, J., & Ruther, J. (2023). Sublethal effects of four insecticides targeting cholinergic neurons on partner and host finding in the parasitic wasp <i>Nasonia vitripennis</i>. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2400–2411. https://doi.org/10.1002/etc.5721</p><p>Suski, J. G., Chanov, M. K., Heron, C. G., Field, J. A., & Salice, C. J. (2023). Ecotoxicity and accumulation of perfluorononanoic acid in the fathead minnow (<i>Pimephales promelas</i>) and an approach to developing protective thresholds in the aquatic environment through species sensitivity distribution. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 2229–2236. https://doi.org/10.1002/etc.5692</p><p>Trapp, S., Shi, J., & Zeng, L. (2023). Generic model for plant uptake of ionizable pharmaceuticals and personal care products. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 793–804. https://doi.org/10.1002/etc.5582</p><p>Wagner-Deyriès, M., Varignier, L., Revel, M., Delhaye, T., Rondeau, D., Coutellec, M.-A., & McCairns, R. J. S. (2023). Variation of tolerance to isothiazolinones among <i>Daphnia pulex</i> clones. <i>Environmental Toxicology and Chemistry</i>, <i>42</i>, 805–814. https://doi.org/10.1002/etc.5564</p>\",\"PeriodicalId\":11793,\"journal\":{\"name\":\"Environmental Toxicology and Chemistry\",\"volume\":\"43 7\",\"pages\":\"1463-1465\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/etc.5933\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology and Chemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/etc.5933\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/etc.5933","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
https://doi.org/10.1002/etc.5503Schöfer, N., Ackermann, J., Hoheneder, J., Hofferberth, J., & Ruther, J. (2023)。针对胆碱能神经元的四种杀虫剂对寄生蜂 Nasonia vitripennis 寻找伙伴和宿主的亚致死效应。https://doi.org/10.1002/etc.5721Suski, J. G., Chanov, M. K., Heron, C. G., Field, J. A., & Salice, C. J. (2023).全氟壬酸在黑头鲦鱼(Pimephales promelas)中的生态毒性和蓄积,以及通过物种敏感性分布制定水生环境中保护阈值的方法。https://doi.org/10.1002/etc.5692Trapp, S., Shi, J., & Zeng, L. (2023).植物吸收可离子化药物和个人护理产品的通用模型。https://doi.org/10.1002/etc.5582Wagner-Deyriès, M., Varignier, L., Revel, M., Delhaye, T., Rondeau, D., Coutellec, M.-A., & McCairns, R. J. S. (2023).水蚤克隆对异噻唑啉酮的耐受性差异。https://doi.org/10.1002/etc.5564
Genes-to-Pathways Species Conservation Analysis: Enabling the Exploration of Conservation of Biological Pathways and Processes Across Species
Claudia Rivetti, Jade Houghton, Danilo Basili, Geoff Hodges, and Bruno Campos
DOI:doi.org/10.1002/etc.5600
The development of the Genes-to-Pathways Species Conservation Analysis (G2P-SCAN), a novel R package designed to enhance the understanding of cross-species conservation of biological pathways, is a major leap forward towards integrating computational biology approaches into safety assessments. By integrating data from multiple databases and focusing on gene orthologs, protein families, entities, and reactions, G2P-SCAN offers a comprehensive tool for analyzing the conservation of biological processes across various species. This methodology supports the reduction of animal testing by enabling more accurate species extrapolation and risk assessment.
The paper's significance lies in its potential to improve the accessibility and synthesis of genomic data, thus facilitating the application of mechanistically based data in ecological risk assessments. The authors demonstrate the utility of G2P-SCAN through five case studies, validating its effectiveness in identifying conservation and susceptibility at the pathway level across different species. This work not only advances scientific understanding but also aligns with global regulatory shifts towards new approach methodologies (NAMs), promoting the use of computational and cell-based approaches in safety assessments.
REFERENCE
Rivetti, C., Houghton, J., Basili, D., Hodges, G., & Campos, B. (2023), Genes-to-pathways species conservation analysis: Enabling the exploration of conservation of biological pathways and processes across species. Environmental Toxicology and Chemistry, 42, 1152–1166.
Jana Asselmann
Ghent University
Ghent, Belgium
Best Paper Award winner Claudia Rivetti.
Models used to predict chemical bioaccumulation in fish from in vitro biotransformation rates require accurate estimates of blood–water partitioning and chemical volume of distribution
Leslie J. Saunders and John W. Nichols
DOI:10.1002/etc.5503
Arsenic and mercury distribution in an aquatic food chain: Importance of femtoplankton and picoplankton filtration fractions
Abdullah M. Alowaifeer, Scott Clingenpeel, Jinjun Kan, Patricia E. Bigelow, Masafumi Yoshinaga, Brian Bothner, and Timothy R. McDermott
DOI:10.1002/etc.5516
Sublethal exposure of per- and polyfluoroalkyl substances of varying chain length and polar functionality results in distinct metabolic responses in Daphnia magna
Lisa M. Labine, Erico A. Oliveira Pereira, Sonya Kleywegt, Karl J. Jobst, André J. Simpson, and Myrna J. Simpson
DOI:10.1002/etc.5517
Prioritizing pesticides of potential concern and identifying potential mixture effects in great lakes tributaries using passive samplers
Luke C. Loken, Steven R. Corsi, David A. Alvarez, Gerald T. Ankley, Austin K. Baldwin, Brett R. Blackwell, Laura A. De Cicco, Michele A. Nott, Samantha K. Oliver, and Daniel L. Villeneuve
DOI:10.1002/etc.5491
Development of a new polar organic chemical integrative sampler for 1,4-dioxane using silicone membrane as a diffusion barrier
Combining in vitro and in silico new approach methods to investigate type 3 iodothyronine deiodinase chemical inhibition across species
Sally A. Mayasich, Michael R. Goldsmith, Kali Z. Mattingly, and Carlie A. LaLone
DOI:10.1002/etc.5591
Salmonid pituitary cells as a test system for identifying endocrine-disrupting compounds
Louisa Harding, Irvin R. Schultz, Graham Young, and Penny Swanson
DOI:10.1002/etc.5644
Changes in temperature alter the toxicity of polycyclic aromatic compounds to American lobster (Homarus americanus) larvae
Danielle Philibert, Sarah Marteinson, and Benjamin de Jourdan
DOI:10.1002/etc.5719
Application of ion mobility spectrometry–mass spectrometry for compositional characterization and fingerprinting of a library of diverse crude oil samples
Alexandra C. Cordova, James N. Dodds, Han-Hsuan D. Tsai, Dillon T. Lloyd, Alina T. Roman-Hubers, Fred A. Wright, Weihsueh A. Chiu, Thomas J. McDonald, Rui Zhu, Galen Newman, and Ivan Rusyn
DOI:10.1002/etc.5727
Metal mixture toxicity of Ni, Cu, and Zn in freshwater algal communities and the correlation of single-species sensitivities among single metals: A comparative analysis
Andreas Fettweis, Simon Hansul, Karel De Schamphelaere, and Erik Smolders
DOI:10.1002/etc.5735
Alowaifeer, A. M., Clingenpeel, S., Kan, J., Bigelow, P. E., Yoshinaga, M., Bothner, B., & McDermott, T. R. (2023). Arsenic and mercury distribution in an aquatic food chain: Importance of femtoplankton and picoplankton filtration fractions. Environmental Toxicology and Chemistry, 42, 225–241. https://doi.org/10.1002/etc.5516
Brix, K. V., Tear, L., DeForest, D. K., & Adams, W. J. (2023). Development of multiple linear regression models for predicting chronic iron toxicity to aquatic organisms. Environmental Toxicology and Chemistry, 42, 1386–1400. https://doi.org/10.1002/etc.5623
Chung, J., Lee, J.-H., Hwang, D.-S., Park, D.-H., An, Y.-J., Yeom, D.-H., Park, T.-J., & Choi, J. (2023). Comparison of the estimation methods from acute to chronic biotic ligand model-based predicted no-effect concentrations for nickel in freshwater species. Environmental Toxicology and Chemistry, 42, 914–927. https://doi.org/10.1002/etc.5572
Cordova, A. C., Dodds, J. N., Tsai, H.-H. D., Lloyd, D. T., Roman-Hubers, A. T., Wright, F. A., Chiu, W. A., McDonald, T. J., Zhu, R., Newman, G., & Rusyn, I. (2023). Application of ion mobility spectrometry–mass spectrometry for compositional characterization and fingerprinting of a library of diverse crude oil samples. Environmental Toxicology and Chemistry, 42, 2336–2349. https://doi.org/10.1002/etc.5727
Doering, J. A., Tillitt, D. E., & Wiseman, S. (2023). Reevaluation of 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalency factors for dioxin-like polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and polychlorinated biphenyls for fishes. Environmental Toxicology and Chemistry, 42, 2215–2228. https://doi.org/10.1002/etc.5690
Fettweis, A., Hansul, S., Schamphelaere, K. D., & Smolders, E. (2023). Metal mixture toxicity of Ni, Cu, and Zn in freshwater algal communities and the correlation of single-species sensitivities among single metals: A comparative analysis. Environmental Toxicology and Chemistry, 42, 2666–2683. https://doi.org/10.1002/etc.5735
Harding, L., Schultz, I. R., Young, G., & Swanson, P. (2023). Salmonid pituitary cells as a test system for identifying endocrine-disrupting compounds. Environmental Toxicology and Chemistry, 42, 1730–1742. https://doi.org/10.1002/etc.5644
Ji, X., Arenas, C. E. D., Perez, A. S. C., Giesy, J. P., & Brinkmann, M. (2023). Predicting the kinetics of resupply of organic pollutants from sediments using diffusive gradients in thin film samplers and their bioavailability to aquatic invertebrates. Environmental Toxicology and Chemistry, 42, 1696–1708. https://doi.org/10.1002/etc.5681
Jeninga, A. J., Wallace, Z., Victoria, S., Harrahy, E., & King-Heiden, T. C. (2023). Chronic exposure to environmentally relevant concentrations of imidacloprid impact survival and ecologically relevant behaviors of fathead minnow larvae. Environmental Toxicology and Chemistry, 42, 2184–2192. https://doi.org/10.1002/etc.5710
Kast, C., Droz, B., & Kilchenmann, V. (2023). Toxicity of coumaphos residues in beeswax foundation to the honey bee brood. Environmental Toxicology and Chemistry, 42, 1816–1822. https://doi.org/10.1002/etc.5645
Labine, L. M., Oliveira Pereira, E. A., Kleywegt, S., Jobst, K. J., Simpson, A. J., & Simpson, M. J. (2023). Sublethal exposure of per- and polyfluoroalkyl substances of varying chain length and polar functionality results in distinct metabolic responses in Daphnia magna. Environmental Toxicology and Chemistry, 42, 242–256. https://doi.org/10.1002/etc.5517
Loken, L. C., Corsi, S. R., Alvarez, D. A., Ankley, G. T., Baldwin, A. K., Blackwell, B. R., De Cicco, L. A., Nott, M. A., Oliver, S. K., & Villeneuve, D. L. (2023). Prioritizing pesticides of potential concern and identifying potential mixture effects in Great Lakes tributaries using passive samplers. Environmental Toxicology and Chemistry, 42, 340–366. https://doi.org/10.1002/etc.5491
Mayasich, S. A., Goldsmith, M. R., Mattingly, K. Z., & LaLone, C. A. (2023). Combining in vitro and in silico new approach methods to investigate type 3 iodothyronine deiodinase chemical inhibition across species. Environmental Toxicology and Chemistry, 42, 1032–1048. https://doi.org/10.1002/etc.5591
Noro, K., Endo, S., Inoue, D., Suzuki, N., Kameoka, H., Ono, J., Nakamura, S., & Yabuki, Y. (2023). Development of a new polar organic chemical integrative sampler for 1,4-dioxane using silicone membrane as a diffusion barrier. Environmental Toxicology and Chemistry, 42, 296–302. https://doi.org/10.1002/etc.5518
Philibert, D., Marteinson, S., & de Jourdan, B. (2023). Changes in temperature alter the toxicity of polycyclic aromatic compounds to American lobster (Homarus americanus) larvae. Environmental Toxicology and Chemistry, 42, 2389–2399. https://doi.org/10.1002/etc.5719
Rivetti, C., Houghton, J., Basili, D., Hodges, G., & Campos, B. (2023). Genes-to-pathways species conservation analysis: Enabling the exploration of conservation of biological pathways and processes across species. Environmental Toxicology and Chemistry, 42, 1152–1166. https://doi.org/10.1002/etc.5600
Saunders, L. J., & Nichols, J. W. (2023). Models used to predict chemical bioaccumulation in fish from in vitro biotransformation rates require accurate estimates of blood–water partitioning and chemical volume of distribution. Environmental Toxicology and Chemistry, 42, 33–45. https://doi.org/10.1002/etc.5503
Schöfer, N., Ackermann, J., Hoheneder, J., Hofferberth, J., & Ruther, J. (2023). Sublethal effects of four insecticides targeting cholinergic neurons on partner and host finding in the parasitic wasp Nasonia vitripennis. Environmental Toxicology and Chemistry, 42, 2400–2411. https://doi.org/10.1002/etc.5721
Suski, J. G., Chanov, M. K., Heron, C. G., Field, J. A., & Salice, C. J. (2023). Ecotoxicity and accumulation of perfluorononanoic acid in the fathead minnow (Pimephales promelas) and an approach to developing protective thresholds in the aquatic environment through species sensitivity distribution. Environmental Toxicology and Chemistry, 42, 2229–2236. https://doi.org/10.1002/etc.5692
Trapp, S., Shi, J., & Zeng, L. (2023). Generic model for plant uptake of ionizable pharmaceuticals and personal care products. Environmental Toxicology and Chemistry, 42, 793–804. https://doi.org/10.1002/etc.5582
Wagner-Deyriès, M., Varignier, L., Revel, M., Delhaye, T., Rondeau, D., Coutellec, M.-A., & McCairns, R. J. S. (2023). Variation of tolerance to isothiazolinones among Daphnia pulex clones. Environmental Toxicology and Chemistry, 42, 805–814. https://doi.org/10.1002/etc.5564
期刊介绍:
The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...]
Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.