{"title":"系统树和网络中模式出现的 0-1 规律。","authors":"François Bienvenu, Mike Steel","doi":"10.1007/s11538-024-01316-x","DOIUrl":null,"url":null,"abstract":"<p><p>In a recent paper, the question of determining the fraction of binary trees that contain a fixed pattern known as the snowflake was posed. We show that this fraction goes to 1, providing two very different proofs: a purely combinatorial one that is quantitative and specific to this problem; and a proof using branching process techniques that is less explicit, but also much more general, as it applies to any fixed patterns and can be extended to other trees and networks. In particular, it follows immediately from our second proof that the fraction of d-ary trees (resp. level-k networks) that contain a fixed d-ary tree (resp. level-k network) tends to 1 as the number of leaves grows.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561131/pdf/","citationCount":"0","resultStr":"{\"title\":\"0-1 Laws for Pattern Occurrences in Phylogenetic Trees and Networks.\",\"authors\":\"François Bienvenu, Mike Steel\",\"doi\":\"10.1007/s11538-024-01316-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a recent paper, the question of determining the fraction of binary trees that contain a fixed pattern known as the snowflake was posed. We show that this fraction goes to 1, providing two very different proofs: a purely combinatorial one that is quantitative and specific to this problem; and a proof using branching process techniques that is less explicit, but also much more general, as it applies to any fixed patterns and can be extended to other trees and networks. In particular, it follows immediately from our second proof that the fraction of d-ary trees (resp. level-k networks) that contain a fixed d-ary tree (resp. level-k network) tends to 1 as the number of leaves grows.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11561131/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11538-024-01316-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11538-024-01316-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
在最近的一篇论文中,我们提出了一个问题:如何确定二叉树中包含固定图案(即雪花)的部分。我们证明了这个分数为 1,并提供了两个截然不同的证明:一个是纯粹的组合证明,它是定量的,专门针对这个问题;另一个是使用分支过程技术的证明,它不那么明确,但也更通用,因为它适用于任何固定模式,并可扩展到其他树和网络。特别是,从我们的第二个证明可以立即看出,随着树叶数量的增加,包含固定 dary 树(或 k 级网络)的 dary 树(或 k 级网络)的分数趋向于 1。
0-1 Laws for Pattern Occurrences in Phylogenetic Trees and Networks.
In a recent paper, the question of determining the fraction of binary trees that contain a fixed pattern known as the snowflake was posed. We show that this fraction goes to 1, providing two very different proofs: a purely combinatorial one that is quantitative and specific to this problem; and a proof using branching process techniques that is less explicit, but also much more general, as it applies to any fixed patterns and can be extended to other trees and networks. In particular, it follows immediately from our second proof that the fraction of d-ary trees (resp. level-k networks) that contain a fixed d-ary tree (resp. level-k network) tends to 1 as the number of leaves grows.