基于贝叶斯卷积神经网络的广义线性模型。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2024-03-27 DOI:10.1093/biomtc/ujae057
Yeseul Jeon, Won Chang, Seonghyun Jeong, Sanghoon Han, Jaewoo Park
{"title":"基于贝叶斯卷积神经网络的广义线性模型。","authors":"Yeseul Jeon, Won Chang, Seonghyun Jeong, Sanghoon Han, Jaewoo Park","doi":"10.1093/biomtc/ujae057","DOIUrl":null,"url":null,"abstract":"<p><p>Convolutional neural networks (CNNs) provide flexible function approximations for a wide variety of applications when the input variables are in the form of images or spatial data. Although CNNs often outperform traditional statistical models in prediction accuracy, statistical inference, such as estimating the effects of covariates and quantifying the prediction uncertainty, is not trivial due to the highly complicated model structure and overparameterization. To address this challenge, we propose a new Bayesian approach by embedding CNNs within the generalized linear models (GLMs) framework. We use extracted nodes from the last hidden layer of CNN with Monte Carlo (MC) dropout as informative covariates in GLM. This improves accuracy in prediction and regression coefficient inference, allowing for the interpretation of coefficients and uncertainty quantification. By fitting ensemble GLMs across multiple realizations from MC dropout, we can account for uncertainties in extracting the features. We apply our methods to biological and epidemiological problems, which have both high-dimensional correlated inputs and vector covariates. Specifically, we consider malaria incidence data, brain tumor image data, and fMRI data. By extracting information from correlated inputs, the proposed method can provide an interpretable Bayesian analysis. The algorithm can be broadly applicable to image regressions or correlated data analysis by enabling accurate Bayesian inference quickly.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian convolutional neural network-based generalized linear model.\",\"authors\":\"Yeseul Jeon, Won Chang, Seonghyun Jeong, Sanghoon Han, Jaewoo Park\",\"doi\":\"10.1093/biomtc/ujae057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Convolutional neural networks (CNNs) provide flexible function approximations for a wide variety of applications when the input variables are in the form of images or spatial data. Although CNNs often outperform traditional statistical models in prediction accuracy, statistical inference, such as estimating the effects of covariates and quantifying the prediction uncertainty, is not trivial due to the highly complicated model structure and overparameterization. To address this challenge, we propose a new Bayesian approach by embedding CNNs within the generalized linear models (GLMs) framework. We use extracted nodes from the last hidden layer of CNN with Monte Carlo (MC) dropout as informative covariates in GLM. This improves accuracy in prediction and regression coefficient inference, allowing for the interpretation of coefficients and uncertainty quantification. By fitting ensemble GLMs across multiple realizations from MC dropout, we can account for uncertainties in extracting the features. We apply our methods to biological and epidemiological problems, which have both high-dimensional correlated inputs and vector covariates. Specifically, we consider malaria incidence data, brain tumor image data, and fMRI data. By extracting information from correlated inputs, the proposed method can provide an interpretable Bayesian analysis. The algorithm can be broadly applicable to image regressions or correlated data analysis by enabling accurate Bayesian inference quickly.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae057\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae057","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

当输入变量为图像或空间数据时,卷积神经网络(CNN)可为各种应用提供灵活的函数近似。虽然卷积神经网络在预测准确性上往往优于传统统计模型,但由于模型结构非常复杂且参数过多,统计推断(如估计协变量的影响和量化预测的不确定性)并非易事。为了应对这一挑战,我们提出了一种新的贝叶斯方法,即在广义线性模型(GLM)框架内嵌入 CNN。我们将从 CNN 最后一个隐藏层提取的节点与蒙特卡罗(MC)剔除作为广义线性模型中的信息协变量。这提高了预测和回归系数推断的准确性,允许对系数进行解释和不确定性量化。通过拟合来自 MC 丢失的多个变现的集合 GLM,我们可以考虑提取特征时的不确定性。我们将我们的方法应用于生物和流行病学问题,这些问题既有高维相关输入,也有向量协变量。具体来说,我们考虑了疟疾发病率数据、脑肿瘤图像数据和 fMRI 数据。通过从相关输入中提取信息,所提出的方法可以提供可解释的贝叶斯分析。通过快速实现准确的贝叶斯推理,该算法可广泛应用于图像回归或相关数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bayesian convolutional neural network-based generalized linear model.

Convolutional neural networks (CNNs) provide flexible function approximations for a wide variety of applications when the input variables are in the form of images or spatial data. Although CNNs often outperform traditional statistical models in prediction accuracy, statistical inference, such as estimating the effects of covariates and quantifying the prediction uncertainty, is not trivial due to the highly complicated model structure and overparameterization. To address this challenge, we propose a new Bayesian approach by embedding CNNs within the generalized linear models (GLMs) framework. We use extracted nodes from the last hidden layer of CNN with Monte Carlo (MC) dropout as informative covariates in GLM. This improves accuracy in prediction and regression coefficient inference, allowing for the interpretation of coefficients and uncertainty quantification. By fitting ensemble GLMs across multiple realizations from MC dropout, we can account for uncertainties in extracting the features. We apply our methods to biological and epidemiological problems, which have both high-dimensional correlated inputs and vector covariates. Specifically, we consider malaria incidence data, brain tumor image data, and fMRI data. By extracting information from correlated inputs, the proposed method can provide an interpretable Bayesian analysis. The algorithm can be broadly applicable to image regressions or correlated data analysis by enabling accurate Bayesian inference quickly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信