维管束枯萎病真菌 Fusarium oxysporum操纵寄主过程中的分子对话

IF 9.1 1区 农林科学 Q1 PLANT SCIENCES
Annual review of phytopathology Pub Date : 2024-09-01 Epub Date: 2024-08-22 DOI:10.1146/annurev-phyto-021722-034823
Vidha Srivastava, Kuntal Patra, Hsuan Pai, Maria Victoria Aguilar-Pontes, Aileen Berasategui, Avinash Kamble, Antonio Di Pietro, Amey Redkar
{"title":"维管束枯萎病真菌 Fusarium oxysporum操纵寄主过程中的分子对话","authors":"Vidha Srivastava, Kuntal Patra, Hsuan Pai, Maria Victoria Aguilar-Pontes, Aileen Berasategui, Avinash Kamble, Antonio Di Pietro, Amey Redkar","doi":"10.1146/annurev-phyto-021722-034823","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular wilt fungi are a group of hemibiotrophic phytopathogens that infect diverse crop plants. These pathogens have adapted to thrive in the nutrient-deprived niche of the plant xylem. Identification and functional characterization of effectors and their role in the establishment of compatibility across multiple hosts, suppression of plant defense, host reprogramming, and interaction with surrounding microbes have been studied mainly in model vascular wilt pathogens <i>Fusarium oxysporum</i> and <i>Verticillium dahliae</i>. Comparative analysis of genomes from fungal isolates has accelerated our understanding of genome compartmentalization and its role in effector evolution. Also, advances in recent years have shed light on the cross talk of root-infecting fungi across multiple scales from the cellular to the ecosystem level, covering their interaction with the plant microbiome as well as their interkingdom signaling. This review elaborates on our current understanding of the cross talk between vascular wilt fungi and the host plant, which eventually leads to a specialized lifestyle in the xylem. We particularly focus on recent findings in <i>F. oxysporum</i>, including multihost associations, and how they have contributed to understanding the biology of fungal adaptation to the xylem. In addition, we discuss emerging research areas and highlight open questions and future challenges.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":" ","pages":"97-126"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Dialogue During Host Manipulation by the Vascular Wilt Fungus <i>Fusarium oxysporum</i>.\",\"authors\":\"Vidha Srivastava, Kuntal Patra, Hsuan Pai, Maria Victoria Aguilar-Pontes, Aileen Berasategui, Avinash Kamble, Antonio Di Pietro, Amey Redkar\",\"doi\":\"10.1146/annurev-phyto-021722-034823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vascular wilt fungi are a group of hemibiotrophic phytopathogens that infect diverse crop plants. These pathogens have adapted to thrive in the nutrient-deprived niche of the plant xylem. Identification and functional characterization of effectors and their role in the establishment of compatibility across multiple hosts, suppression of plant defense, host reprogramming, and interaction with surrounding microbes have been studied mainly in model vascular wilt pathogens <i>Fusarium oxysporum</i> and <i>Verticillium dahliae</i>. Comparative analysis of genomes from fungal isolates has accelerated our understanding of genome compartmentalization and its role in effector evolution. Also, advances in recent years have shed light on the cross talk of root-infecting fungi across multiple scales from the cellular to the ecosystem level, covering their interaction with the plant microbiome as well as their interkingdom signaling. This review elaborates on our current understanding of the cross talk between vascular wilt fungi and the host plant, which eventually leads to a specialized lifestyle in the xylem. We particularly focus on recent findings in <i>F. oxysporum</i>, including multihost associations, and how they have contributed to understanding the biology of fungal adaptation to the xylem. In addition, we discuss emerging research areas and highlight open questions and future challenges.</p>\",\"PeriodicalId\":8251,\"journal\":{\"name\":\"Annual review of phytopathology\",\"volume\":\" \",\"pages\":\"97-126\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-phyto-021722-034823\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-phyto-021722-034823","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

维管束枯萎病真菌是一类感染多种作物的半生物营养型植物病原体。这些病原体适应了在植物木质部营养匮乏的环境中生长。人们主要在维管束枯萎病病原体镰刀菌(Fusarium oxysporum)和大丽轮枝菌(Verticillium dahliae)中研究了效应物的鉴定和功能特征,以及它们在多个宿主间建立兼容性、抑制植物防御、宿主重编程和与周围微生物相互作用中的作用。对真菌分离物基因组的比较分析加速了我们对基因组区隔及其在效应物进化中的作用的理解。此外,近年来的研究进展还揭示了根部感染真菌在从细胞到生态系统等多个尺度上的交叉对话,包括它们与植物微生物组的相互作用以及它们之间的信号传递。这篇综述阐述了我们目前对维管束枯萎病真菌与寄主植物之间交叉对话的理解,这种对话最终导致了木质部中的特殊生活方式。我们特别关注最近在 F. oxysporum(包括多寄主关联)方面的发现,以及这些发现如何有助于理解真菌适应木质部的生物学特性。此外,我们还讨论了新出现的研究领域,并强调了一些悬而未决的问题和未来的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Dialogue During Host Manipulation by the Vascular Wilt Fungus Fusarium oxysporum.

Vascular wilt fungi are a group of hemibiotrophic phytopathogens that infect diverse crop plants. These pathogens have adapted to thrive in the nutrient-deprived niche of the plant xylem. Identification and functional characterization of effectors and their role in the establishment of compatibility across multiple hosts, suppression of plant defense, host reprogramming, and interaction with surrounding microbes have been studied mainly in model vascular wilt pathogens Fusarium oxysporum and Verticillium dahliae. Comparative analysis of genomes from fungal isolates has accelerated our understanding of genome compartmentalization and its role in effector evolution. Also, advances in recent years have shed light on the cross talk of root-infecting fungi across multiple scales from the cellular to the ecosystem level, covering their interaction with the plant microbiome as well as their interkingdom signaling. This review elaborates on our current understanding of the cross talk between vascular wilt fungi and the host plant, which eventually leads to a specialized lifestyle in the xylem. We particularly focus on recent findings in F. oxysporum, including multihost associations, and how they have contributed to understanding the biology of fungal adaptation to the xylem. In addition, we discuss emerging research areas and highlight open questions and future challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of phytopathology
Annual review of phytopathology 生物-植物科学
CiteScore
16.60
自引率
1.00%
发文量
19
期刊介绍: The Annual Review of Phytopathology, established in 1963, covers major advancements in plant pathology, including plant disease diagnosis, pathogens, host-pathogen Interactions, epidemiology and ecology, breeding for resistance and plant disease management, and includes a special section on the development of concepts. The journal is now open access through Annual Reviews' Subscribe to Open program, with articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信