Adam Cawley, Steven Karamatic, Gordon Sutton, D Brynn Hibbert, Andrew R McKinney, Samantha Nelis, Karen Caldwell, E Bruce Young, Stacey Richards, John Keledjian
{"title":"通过 LC-MS-MS 确认赛跑灰狗服用乙醇的情况。","authors":"Adam Cawley, Steven Karamatic, Gordon Sutton, D Brynn Hibbert, Andrew R McKinney, Samantha Nelis, Karen Caldwell, E Bruce Young, Stacey Richards, John Keledjian","doi":"10.1002/dta.3751","DOIUrl":null,"url":null,"abstract":"<p><p>Ethanol is a prohibited substance in professional animal racing as its administration causes physiological effects such as depression of the central nervous system. Regulation of potential doping agents, including those that inhibit performance, is critical to ensure integrity and animal welfare in greyhound racing, but the detection of ethanol is complicated by dietary and/or environmental exposure. In response, a reliable analytical method capable of detecting recent ethanol administration in greyhound urine samples was validated and implemented. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) was used to investigate the variation in urinary ethanol metabolites; ethyl-β-D glucuronide (EG; <math> <semantics> <mrow> <msub><mover><mi>γ</mi> <mo>¯</mo></mover> <mi>EG</mi></msub> </mrow> <annotation>$$ {\\overline{\\gamma}}_{\\mathrm{EG}} $$</annotation></semantics> </math> = 1.0 μg/ml, <math> <semantics> <mrow><msub><mi>s</mi> <mi>EG</mi></msub> </mrow> <annotation>$$ {s}_{\\mathrm{EG}} $$</annotation></semantics> </math> = 3.3 μg/ml) and ethyl sulfate (ES; <math> <semantics> <mrow> <msub><mover><mi>γ</mi> <mo>¯</mo></mover> <mi>ES</mi></msub> </mrow> <annotation>$$ {\\overline{\\gamma}}_{\\mathrm{ES}} $$</annotation></semantics> </math> = 0.9 μg/ml, <math> <semantics> <mrow><msub><mi>s</mi> <mi>ES</mi></msub> </mrow> <annotation>$$ {s}_{\\mathrm{ES}} $$</annotation></semantics> </math> = 1.9 μg/ml) levels from a reference population of 202 racing greyhounds. These were compared to urine samples collected following administration of ethanol to one male and one female greyhound. Results were used to establish a threshold within the national rules of greyhound racing: <math> <semantics> <mrow> <msub><mover><mi>γ</mi> <mo>¯</mo></mover> <mi>EG</mi></msub> </mrow> <annotation>$$ {\\overline{\\gamma}}_{\\mathrm{EG}} $$</annotation></semantics> </math> and <math> <semantics> <mrow> <msub><mover><mi>γ</mi> <mo>¯</mo></mover> <mi>ES</mi></msub> </mrow> <annotation>$$ {\\overline{\\gamma}}_{\\mathrm{ES}} $$</annotation></semantics> </math> > 20 μg/ml in urine are defensible criteria to confirm ethanol administration to greyhounds. Case studies of competition samples are provided to demonstrate the forensic translation of this work.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confirmation of ethanol administration in racing greyhounds by LC-MS-MS.\",\"authors\":\"Adam Cawley, Steven Karamatic, Gordon Sutton, D Brynn Hibbert, Andrew R McKinney, Samantha Nelis, Karen Caldwell, E Bruce Young, Stacey Richards, John Keledjian\",\"doi\":\"10.1002/dta.3751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ethanol is a prohibited substance in professional animal racing as its administration causes physiological effects such as depression of the central nervous system. Regulation of potential doping agents, including those that inhibit performance, is critical to ensure integrity and animal welfare in greyhound racing, but the detection of ethanol is complicated by dietary and/or environmental exposure. In response, a reliable analytical method capable of detecting recent ethanol administration in greyhound urine samples was validated and implemented. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) was used to investigate the variation in urinary ethanol metabolites; ethyl-β-D glucuronide (EG; <math> <semantics> <mrow> <msub><mover><mi>γ</mi> <mo>¯</mo></mover> <mi>EG</mi></msub> </mrow> <annotation>$$ {\\\\overline{\\\\gamma}}_{\\\\mathrm{EG}} $$</annotation></semantics> </math> = 1.0 μg/ml, <math> <semantics> <mrow><msub><mi>s</mi> <mi>EG</mi></msub> </mrow> <annotation>$$ {s}_{\\\\mathrm{EG}} $$</annotation></semantics> </math> = 3.3 μg/ml) and ethyl sulfate (ES; <math> <semantics> <mrow> <msub><mover><mi>γ</mi> <mo>¯</mo></mover> <mi>ES</mi></msub> </mrow> <annotation>$$ {\\\\overline{\\\\gamma}}_{\\\\mathrm{ES}} $$</annotation></semantics> </math> = 0.9 μg/ml, <math> <semantics> <mrow><msub><mi>s</mi> <mi>ES</mi></msub> </mrow> <annotation>$$ {s}_{\\\\mathrm{ES}} $$</annotation></semantics> </math> = 1.9 μg/ml) levels from a reference population of 202 racing greyhounds. These were compared to urine samples collected following administration of ethanol to one male and one female greyhound. Results were used to establish a threshold within the national rules of greyhound racing: <math> <semantics> <mrow> <msub><mover><mi>γ</mi> <mo>¯</mo></mover> <mi>EG</mi></msub> </mrow> <annotation>$$ {\\\\overline{\\\\gamma}}_{\\\\mathrm{EG}} $$</annotation></semantics> </math> and <math> <semantics> <mrow> <msub><mover><mi>γ</mi> <mo>¯</mo></mover> <mi>ES</mi></msub> </mrow> <annotation>$$ {\\\\overline{\\\\gamma}}_{\\\\mathrm{ES}} $$</annotation></semantics> </math> > 20 μg/ml in urine are defensible criteria to confirm ethanol administration to greyhounds. Case studies of competition samples are provided to demonstrate the forensic translation of this work.</p>\",\"PeriodicalId\":160,\"journal\":{\"name\":\"Drug Testing and Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Testing and Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/dta.3751\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/dta.3751","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
乙醇是职业动物赛马的禁用物质,因为服用乙醇会产生生理效应,如抑制中枢神经系统。监管潜在的兴奋剂,包括那些抑制比赛成绩的兴奋剂,对于确保灰狗比赛的公正性和动物福利至关重要,但乙醇的检测因饮食和/或环境暴露而变得复杂。为此,我们验证并采用了一种可靠的分析方法,该方法能够检测灰狗尿样中近期服用的乙醇。液相色谱-串联质谱法(LC-MS-MS)用于研究尿液中乙醇代谢物的变化;乙基-β-D 葡萄糖醛酸(EG;γ ¯ EG $$ {\overline{\gamma}}_\{mathrm{EG}}$$ = 1.0 μg/ml, s EG $$ {s}_{\mathrm{EG}}$$ = 3.3 μg/ml)和硫酸乙酯(ES;γ ¯ ES $$ {over\line{\gamma}}_{mathrm{ES}}$$ = 0.9 μg/ml, s ES$ {s}_{\mathrm{ES}}$$ = 1.9 μg/ml)水平进行比较。将这些结果与给一只雄性和一只雌性灰狗注射乙醇后收集的尿样进行比较。研究结果被用来确定国家灰狗竞赛规则中的阈值:γ ¯ EG $$ {\overline{\gamma}}_{\mathrm{EG}}$ 和 γ ¯ ES $$ {\overline{\gamma}}_{\mathrm{EG}} 。$$ 和 γ ¯ ES $$ {\overline{\gamma}}_{\mathrm{ES}}$$ > 20 μg/ml 是确认灰狗服用乙醇的可靠标准。我们还提供了比赛样本的案例研究,以展示这项工作在法医方面的应用。
Confirmation of ethanol administration in racing greyhounds by LC-MS-MS.
Ethanol is a prohibited substance in professional animal racing as its administration causes physiological effects such as depression of the central nervous system. Regulation of potential doping agents, including those that inhibit performance, is critical to ensure integrity and animal welfare in greyhound racing, but the detection of ethanol is complicated by dietary and/or environmental exposure. In response, a reliable analytical method capable of detecting recent ethanol administration in greyhound urine samples was validated and implemented. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) was used to investigate the variation in urinary ethanol metabolites; ethyl-β-D glucuronide (EG; = 1.0 μg/ml, = 3.3 μg/ml) and ethyl sulfate (ES; = 0.9 μg/ml, = 1.9 μg/ml) levels from a reference population of 202 racing greyhounds. These were compared to urine samples collected following administration of ethanol to one male and one female greyhound. Results were used to establish a threshold within the national rules of greyhound racing: and > 20 μg/ml in urine are defensible criteria to confirm ethanol administration to greyhounds. Case studies of competition samples are provided to demonstrate the forensic translation of this work.
期刊介绍:
As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances.
In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds).
Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.