健康老年人的体能增强(最大 VO 2 $$ {\mathrm{VO}}_{2_{mathrm{max}} $$ )与脑下垂体-去甲肾上腺素能系统的完整性增强有关。

IF 5.6 2区 医学 Q1 PHYSIOLOGY
Emanuele R. G. Plini, Michael C. Melnychuk, Ralph Andrews, Rory Boyle, Robert Whelan, Jeffrey S. Spence, Sandra B. Chapman, Ian H. Robertson, Paul M. Dockree
{"title":"健康老年人的体能增强(最大 VO 2 $$ {\\mathrm{VO}}_{2_{mathrm{max}} $$ )与脑下垂体-去甲肾上腺素能系统的完整性增强有关。","authors":"Emanuele R. G. Plini,&nbsp;Michael C. Melnychuk,&nbsp;Ralph Andrews,&nbsp;Rory Boyle,&nbsp;Robert Whelan,&nbsp;Jeffrey S. Spence,&nbsp;Sandra B. Chapman,&nbsp;Ian H. Robertson,&nbsp;Paul M. Dockree","doi":"10.1111/apha.14191","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Physical activity (PA) is a key component for brain health and Reserve, and it is among the main dementia protective factors. However, the neurobiological mechanisms underpinning Reserve are not fully understood. In this regard, a noradrenergic (NA) theory of cognitive reserve (Robertson, 2013) has proposed that the upregulation of NA system might be a key factor for building reserve and resilience to neurodegeneration because of the neuroprotective role of NA across the brain. PA elicits an enhanced catecholamine response, in particular for NA. By increasing physical commitment, a greater amount of NA is synthetised in response to higher oxygen demand. More physically trained individuals show greater capabilities to carry oxygen resulting in greater <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Vo</mi>\n <msub>\n <mn>2</mn>\n <mi>max</mi>\n </msub>\n </msub>\n </mrow>\n </semantics></math> – a measure of oxygen uptake and physical fitness (PF).</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We hypothesized that greater <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Vo</mi>\n <msub>\n <mn>2</mn>\n <mi>max</mi>\n </msub>\n </msub>\n </mrow>\n </semantics></math> would be related to greater Locus Coeruleus (LC) MRI signal intensity. In a sample of 41 healthy subjects, we performed Voxel-Based Morphometry analyses, then repeated for the other neuromodulators as a control procedure (Serotonin, Dopamine and Acetylcholine).</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>As hypothesized, greater <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Vo</mi>\n <msub>\n <mn>2</mn>\n <mi>max</mi>\n </msub>\n </msub>\n </mrow>\n </semantics></math> related to greater LC signal intensity, and weaker associations emerged for the other neuromodulators.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>This newly established link between <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Vo</mi>\n <msub>\n <mn>2</mn>\n <mi>max</mi>\n </msub>\n </msub>\n </mrow>\n </semantics></math> and LC–NA system offers further understanding of the neurobiology underpinning Reserve in relationship to PA. While this study supports Robertson's theory proposing the upregulation of the NA system as a possible key factor building Reserve, it also provides ground for increasing LC–NA system resilience to neurodegeneration via <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Vo</mi>\n <msub>\n <mn>2</mn>\n <mi>max</mi>\n </msub>\n </msub>\n </mrow>\n </semantics></math> enhancement.</p>\n </section>\n </div>","PeriodicalId":107,"journal":{"name":"Acta Physiologica","volume":"240 8","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greater physical fitness (\\n \\n \\n \\n VO\\n \\n 2\\n max\\n \\n \\n \\n ) in healthy older adults associated with increased integrity of the locus coeruleus–noradrenergic system\",\"authors\":\"Emanuele R. G. Plini,&nbsp;Michael C. Melnychuk,&nbsp;Ralph Andrews,&nbsp;Rory Boyle,&nbsp;Robert Whelan,&nbsp;Jeffrey S. Spence,&nbsp;Sandra B. Chapman,&nbsp;Ian H. Robertson,&nbsp;Paul M. Dockree\",\"doi\":\"10.1111/apha.14191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Physical activity (PA) is a key component for brain health and Reserve, and it is among the main dementia protective factors. However, the neurobiological mechanisms underpinning Reserve are not fully understood. In this regard, a noradrenergic (NA) theory of cognitive reserve (Robertson, 2013) has proposed that the upregulation of NA system might be a key factor for building reserve and resilience to neurodegeneration because of the neuroprotective role of NA across the brain. PA elicits an enhanced catecholamine response, in particular for NA. By increasing physical commitment, a greater amount of NA is synthetised in response to higher oxygen demand. More physically trained individuals show greater capabilities to carry oxygen resulting in greater <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Vo</mi>\\n <msub>\\n <mn>2</mn>\\n <mi>max</mi>\\n </msub>\\n </msub>\\n </mrow>\\n </semantics></math> – a measure of oxygen uptake and physical fitness (PF).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We hypothesized that greater <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Vo</mi>\\n <msub>\\n <mn>2</mn>\\n <mi>max</mi>\\n </msub>\\n </msub>\\n </mrow>\\n </semantics></math> would be related to greater Locus Coeruleus (LC) MRI signal intensity. In a sample of 41 healthy subjects, we performed Voxel-Based Morphometry analyses, then repeated for the other neuromodulators as a control procedure (Serotonin, Dopamine and Acetylcholine).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>As hypothesized, greater <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Vo</mi>\\n <msub>\\n <mn>2</mn>\\n <mi>max</mi>\\n </msub>\\n </msub>\\n </mrow>\\n </semantics></math> related to greater LC signal intensity, and weaker associations emerged for the other neuromodulators.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>This newly established link between <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Vo</mi>\\n <msub>\\n <mn>2</mn>\\n <mi>max</mi>\\n </msub>\\n </msub>\\n </mrow>\\n </semantics></math> and LC–NA system offers further understanding of the neurobiology underpinning Reserve in relationship to PA. While this study supports Robertson's theory proposing the upregulation of the NA system as a possible key factor building Reserve, it also provides ground for increasing LC–NA system resilience to neurodegeneration via <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Vo</mi>\\n <msub>\\n <mn>2</mn>\\n <mi>max</mi>\\n </msub>\\n </msub>\\n </mrow>\\n </semantics></math> enhancement.</p>\\n </section>\\n </div>\",\"PeriodicalId\":107,\"journal\":{\"name\":\"Acta Physiologica\",\"volume\":\"240 8\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/apha.14191\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologica","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/apha.14191","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:体力活动(PA)是大脑健康和储备的关键组成部分,也是痴呆症的主要保护因素之一。然而,人们还不完全了解支撑认知储备的神经生物学机制。在这方面,认知储备的去甲肾上腺素能理论(Robertson,2013 年)提出,去甲肾上腺素能系统的上调可能是建立储备和抵御神经变性的关键因素,因为去甲肾上腺素能在整个大脑中发挥神经保护作用。体力活动会增强儿茶酚胺反应,尤其是对 NA 的反应。通过增加体力投入,可以合成更多的 NA 来应对更高的氧需求。受过更多体能训练的人显示出更强的携氧能力,从而获得更高的Vo 2 max $$ {\mathrm{Vo}}_{2_{\mathrm{max}} $$ - 这是氧气摄入量和体能(PF)的衡量标准:我们假设,Vo 2 max $$ {\mathrm{Vo}}_{2_{mathrm{max}} $$ 的增大将与更大的Locus Coeruleus (LC) MRI信号强度有关。我们对 41 名健康受试者进行了体素形态计量学分析,然后作为对照,对其他神经调节剂(羟色胺、多巴胺和乙酰胆碱)进行了重复分析:结果:正如假设的那样,Vo 2 max $$ {\mathrm{Vo}}_{2_{mathrm{max}} $$ 与更大的 LC 信号强度相关,而其他神经调节剂的相关性较弱:Vo 2 max $$ {\mathrm{Vo}}_{2_{math\rm{max}} $$ 与 LC-NA 系统之间新建立的联系使人们进一步了解了 Reserve 与 PA 关系的神经生物学基础。这项研究支持罗伯逊的理论,即NA系统的上调可能是建立储备的一个关键因素,同时它也为通过Vo 2 max $$ {\mathrm{Vo}}_{2_{mathrm{max}} $$ 增强LC-NA系统对神经变性的复原力提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Greater physical fitness ( VO 2 max ) in healthy older adults associated with increased integrity of the locus coeruleus–noradrenergic system

Aim

Physical activity (PA) is a key component for brain health and Reserve, and it is among the main dementia protective factors. However, the neurobiological mechanisms underpinning Reserve are not fully understood. In this regard, a noradrenergic (NA) theory of cognitive reserve (Robertson, 2013) has proposed that the upregulation of NA system might be a key factor for building reserve and resilience to neurodegeneration because of the neuroprotective role of NA across the brain. PA elicits an enhanced catecholamine response, in particular for NA. By increasing physical commitment, a greater amount of NA is synthetised in response to higher oxygen demand. More physically trained individuals show greater capabilities to carry oxygen resulting in greater Vo 2 max – a measure of oxygen uptake and physical fitness (PF).

Methods

We hypothesized that greater Vo 2 max would be related to greater Locus Coeruleus (LC) MRI signal intensity. In a sample of 41 healthy subjects, we performed Voxel-Based Morphometry analyses, then repeated for the other neuromodulators as a control procedure (Serotonin, Dopamine and Acetylcholine).

Results

As hypothesized, greater Vo 2 max related to greater LC signal intensity, and weaker associations emerged for the other neuromodulators.

Conclusion

This newly established link between Vo 2 max and LC–NA system offers further understanding of the neurobiology underpinning Reserve in relationship to PA. While this study supports Robertson's theory proposing the upregulation of the NA system as a possible key factor building Reserve, it also provides ground for increasing LC–NA system resilience to neurodegeneration via Vo 2 max enhancement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physiologica
Acta Physiologica 医学-生理学
CiteScore
11.80
自引率
15.90%
发文量
182
审稿时长
4-8 weeks
期刊介绍: Acta Physiologica is an important forum for the publication of high quality original research in physiology and related areas by authors from all over the world. Acta Physiologica is a leading journal in human/translational physiology while promoting all aspects of the science of physiology. The journal publishes full length original articles on important new observations as well as reviews and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信