具有强自旋轨道相互作用的旋转对称量子点中的完美泽曼各向异性。

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Markus Aspegren, Lila Chergui, Mikelis Marnauza, Rousan Debbarma, Jakob Bengtsson, Sebastian Lehmann, Kimberly A. Dick, Stephanie M. Reimann and Claes Thelander*, 
{"title":"具有强自旋轨道相互作用的旋转对称量子点中的完美泽曼各向异性。","authors":"Markus Aspegren,&nbsp;Lila Chergui,&nbsp;Mikelis Marnauza,&nbsp;Rousan Debbarma,&nbsp;Jakob Bengtsson,&nbsp;Sebastian Lehmann,&nbsp;Kimberly A. Dick,&nbsp;Stephanie M. Reimann and Claes Thelander*,&nbsp;","doi":"10.1021/acs.nanolett.4c01247","DOIUrl":null,"url":null,"abstract":"<p >In nanoscale structures with rotational symmetry, such as quantum rings, the orbital motion of electrons combined with a spin–orbit interaction can produce a very strong and anisotropic Zeeman effect. Since symmetry is sensitive to electric fields, ring-like geometries provide an opportunity to manipulate magnetic properties over an exceptionally wide range. In this work, we show that it is possible to form rotationally symmetric confinement potentials inside a semiconductor quantum dot, resulting in electron orbitals with large orbital angular momentum and strong spin−orbit interactions. We find complete suppression of Zeeman spin splitting for magnetic fields applied in the quantum dot plane, similar to the expected behavior of an ideal quantum ring. Spin splitting reappears as orbital interactions are activated with symmetry-breaking electric fields. For two valence electrons, representing a common basis for spin-qubits, we find that modulating the rotational symmetry may offer new prospects for realizing tunable protection and interaction of spin–orbital states.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.4c01247","citationCount":"0","resultStr":"{\"title\":\"Perfect Zeeman Anisotropy in Rotationally Symmetric Quantum Dots with Strong Spin–Orbit Interaction\",\"authors\":\"Markus Aspegren,&nbsp;Lila Chergui,&nbsp;Mikelis Marnauza,&nbsp;Rousan Debbarma,&nbsp;Jakob Bengtsson,&nbsp;Sebastian Lehmann,&nbsp;Kimberly A. Dick,&nbsp;Stephanie M. Reimann and Claes Thelander*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.4c01247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In nanoscale structures with rotational symmetry, such as quantum rings, the orbital motion of electrons combined with a spin–orbit interaction can produce a very strong and anisotropic Zeeman effect. Since symmetry is sensitive to electric fields, ring-like geometries provide an opportunity to manipulate magnetic properties over an exceptionally wide range. In this work, we show that it is possible to form rotationally symmetric confinement potentials inside a semiconductor quantum dot, resulting in electron orbitals with large orbital angular momentum and strong spin−orbit interactions. We find complete suppression of Zeeman spin splitting for magnetic fields applied in the quantum dot plane, similar to the expected behavior of an ideal quantum ring. Spin splitting reappears as orbital interactions are activated with symmetry-breaking electric fields. For two valence electrons, representing a common basis for spin-qubits, we find that modulating the rotational symmetry may offer new prospects for realizing tunable protection and interaction of spin–orbital states.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.nanolett.4c01247\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01247\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01247","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在具有旋转对称性的纳米级结构(如量子环)中,电子的轨道运动与自旋轨道相互作用相结合,可产生极强的各向异性泽曼效应。由于对称性对电场非常敏感,因此环状几何结构为在极宽的范围内操纵磁性提供了机会。在这项研究中,我们发现有可能在半导体量子点内部形成旋转对称的约束势,从而产生具有大轨道角动量和强自旋轨道相互作用的电子轨道。我们发现,在量子点平面上施加磁场时,泽曼自旋分裂被完全抑制,这与理想量子环的预期行为相似。当轨道相互作用被打破对称的电场激活时,自旋分裂再次出现。对于代表自旋比特共同基础的两个价电子,我们发现调节旋转对称性可为实现自旋轨道态的可调保护和相互作用提供新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Perfect Zeeman Anisotropy in Rotationally Symmetric Quantum Dots with Strong Spin–Orbit Interaction

Perfect Zeeman Anisotropy in Rotationally Symmetric Quantum Dots with Strong Spin–Orbit Interaction

Perfect Zeeman Anisotropy in Rotationally Symmetric Quantum Dots with Strong Spin–Orbit Interaction

In nanoscale structures with rotational symmetry, such as quantum rings, the orbital motion of electrons combined with a spin–orbit interaction can produce a very strong and anisotropic Zeeman effect. Since symmetry is sensitive to electric fields, ring-like geometries provide an opportunity to manipulate magnetic properties over an exceptionally wide range. In this work, we show that it is possible to form rotationally symmetric confinement potentials inside a semiconductor quantum dot, resulting in electron orbitals with large orbital angular momentum and strong spin−orbit interactions. We find complete suppression of Zeeman spin splitting for magnetic fields applied in the quantum dot plane, similar to the expected behavior of an ideal quantum ring. Spin splitting reappears as orbital interactions are activated with symmetry-breaking electric fields. For two valence electrons, representing a common basis for spin-qubits, we find that modulating the rotational symmetry may offer new prospects for realizing tunable protection and interaction of spin–orbital states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信