{"title":"分子量对聚(l-乳酸)海洋生物降解性的影响。","authors":"","doi":"10.1021/acs.biomac.4c00454","DOIUrl":null,"url":null,"abstract":"<div><div>Poly(<span>l</span>-lactic acid) (PLA) is a biodegradable bioplastic with limited marine degradation. This study examines the impact of molecular weight on PLA’s marine biodegradability. We synthesized PLA with terminal hydroxyl groups (PLA–OH) with degrees of polymerization (DP) between 14 and 642 and conducted biochemical oxygen demand (BOD) tests. Samples with a DP of 422 or 642 did not degrade, like commercial PLA. However, PLA–OH with a DP below 314 showed biodegradability, with DP 14 exhibiting a higher degradability than cellulose. Size exclusion chromatography (SEC) confirmed a decrease in molecular weight for samples with DPs below 314, indicating extracellular microbial activity. These findings suggest that PLA–OH with a DP under 314 can be degraded in marine conditions, unlike high-molecular-weight PLA. If the DP of high-molecular-weight PLA can be reduced to 314 by some specific method, then it is expected that PLA can be used to create marine biodegradable materials.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (82KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"25 7","pages":"Pages 4420-4427"},"PeriodicalIF":5.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Molecular Weight on the Marine Biodegradability of Poly(l‑lactic acid)\",\"authors\":\"\",\"doi\":\"10.1021/acs.biomac.4c00454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Poly(<span>l</span>-lactic acid) (PLA) is a biodegradable bioplastic with limited marine degradation. This study examines the impact of molecular weight on PLA’s marine biodegradability. We synthesized PLA with terminal hydroxyl groups (PLA–OH) with degrees of polymerization (DP) between 14 and 642 and conducted biochemical oxygen demand (BOD) tests. Samples with a DP of 422 or 642 did not degrade, like commercial PLA. However, PLA–OH with a DP below 314 showed biodegradability, with DP 14 exhibiting a higher degradability than cellulose. Size exclusion chromatography (SEC) confirmed a decrease in molecular weight for samples with DPs below 314, indicating extracellular microbial activity. These findings suggest that PLA–OH with a DP under 314 can be degraded in marine conditions, unlike high-molecular-weight PLA. If the DP of high-molecular-weight PLA can be reduced to 314 by some specific method, then it is expected that PLA can be used to create marine biodegradable materials.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (82KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"25 7\",\"pages\":\"Pages 4420-4427\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1525779724003441\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779724003441","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effects of Molecular Weight on the Marine Biodegradability of Poly(l‑lactic acid)
Poly(l-lactic acid) (PLA) is a biodegradable bioplastic with limited marine degradation. This study examines the impact of molecular weight on PLA’s marine biodegradability. We synthesized PLA with terminal hydroxyl groups (PLA–OH) with degrees of polymerization (DP) between 14 and 642 and conducted biochemical oxygen demand (BOD) tests. Samples with a DP of 422 or 642 did not degrade, like commercial PLA. However, PLA–OH with a DP below 314 showed biodegradability, with DP 14 exhibiting a higher degradability than cellulose. Size exclusion chromatography (SEC) confirmed a decrease in molecular weight for samples with DPs below 314, indicating extracellular microbial activity. These findings suggest that PLA–OH with a DP under 314 can be degraded in marine conditions, unlike high-molecular-weight PLA. If the DP of high-molecular-weight PLA can be reduced to 314 by some specific method, then it is expected that PLA can be used to create marine biodegradable materials.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.