首次开发出透明木基三电纳米发电机(TW-TENG):将透明性、木材的美观性和卓越的三电性能融为一体

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ting Cheng , Haiqiao Zhang , Kunli Cao , Yidan Jing , Yan Wu
{"title":"首次开发出透明木基三电纳米发电机(TW-TENG):将透明性、木材的美观性和卓越的三电性能融为一体","authors":"Ting Cheng ,&nbsp;Haiqiao Zhang ,&nbsp;Kunli Cao ,&nbsp;Yidan Jing ,&nbsp;Yan Wu","doi":"10.1016/j.nanoen.2024.109888","DOIUrl":null,"url":null,"abstract":"<div><p>The combination of triboelectric nanogenerator (TENG) and wood-based materials offers a sustainable strategy for energy harvesting. The main challenge in realizing wood-based TENG is to increase the polarizabilities of wood. Herein, we introduce the first instance of a transparent wood-based triboelectric nanogenerator (TW-TENG), which synergistically incorporates superior triboelectric properties, optical properties, and aesthetic of wood. Addressing the challenges of weak polarizability and opacity inherent in natural wood, we propose a functionalized modification approach involving delignification and impregnation with UV-curable resin. In this study, leveraging delignification and the strong electron-donating groups within the UV-curable resin, the electrical output performance of TW-TENG is improved by 6.5 times compared to that of natural wood, and maintains stability over 10,000 operational cycles. Moreover, the matching refractive index between the UV-curable resin and the wood substrate offers TW-TENG with high transparency, achieving an optical transmittance of up to 88.8 %, exhibiting the unique aesthetic value of transparent wood. Furthermore, we demonstrate the potential applications of TW-TENG in energy harvesting, sensor technologies, smart decorative materials, smart home systems, and beyond, exemplified through its utilization in electrical output generation by pressing, capacitor charging and discharging, and self-powered multiplexed sensing smart target shooter.</p></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":null,"pages":null},"PeriodicalIF":16.8000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First development of transparent wood-based triboelectric nanogenerator (TW-TENG): Cooperative incorporation of transparency, aesthetic of wood, and superior triboelectric properties\",\"authors\":\"Ting Cheng ,&nbsp;Haiqiao Zhang ,&nbsp;Kunli Cao ,&nbsp;Yidan Jing ,&nbsp;Yan Wu\",\"doi\":\"10.1016/j.nanoen.2024.109888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The combination of triboelectric nanogenerator (TENG) and wood-based materials offers a sustainable strategy for energy harvesting. The main challenge in realizing wood-based TENG is to increase the polarizabilities of wood. Herein, we introduce the first instance of a transparent wood-based triboelectric nanogenerator (TW-TENG), which synergistically incorporates superior triboelectric properties, optical properties, and aesthetic of wood. Addressing the challenges of weak polarizability and opacity inherent in natural wood, we propose a functionalized modification approach involving delignification and impregnation with UV-curable resin. In this study, leveraging delignification and the strong electron-donating groups within the UV-curable resin, the electrical output performance of TW-TENG is improved by 6.5 times compared to that of natural wood, and maintains stability over 10,000 operational cycles. Moreover, the matching refractive index between the UV-curable resin and the wood substrate offers TW-TENG with high transparency, achieving an optical transmittance of up to 88.8 %, exhibiting the unique aesthetic value of transparent wood. Furthermore, we demonstrate the potential applications of TW-TENG in energy harvesting, sensor technologies, smart decorative materials, smart home systems, and beyond, exemplified through its utilization in electrical output generation by pressing, capacitor charging and discharging, and self-powered multiplexed sensing smart target shooter.</p></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285524006360\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524006360","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

三电纳米发电机(TENG)与木质材料的结合提供了一种可持续的能源采集策略。实现木基 TENG 的主要挑战在于提高木材的极化能力。在本文中,我们首次介绍了透明木基三电纳米发电机(TW-TENG),它协同整合了木材的优异三电特性、光学特性和美学特性。为了解决天然木材固有的弱极化性和不透明性难题,我们提出了一种功能化改性方法,包括木质素脱除和紫外线固化树脂浸渍。在这项研究中,利用木质素化和紫外线固化树脂中的强电子负载基团,TW-TENG 的电输出性能比天然木材提高了 6.5 倍,并在 10,000 次操作循环中保持稳定。此外,紫外线固化树脂与木材基材之间的折射率相匹配,使 TW-TENG 具有高透明度,光学透过率高达 88.8%,展现了透明木材的独特美学价值。此外,我们还展示了 TW-TENG 在能量收集、传感技术、智能装饰材料、智能家居系统等方面的潜在应用,例如在按压产生电输出、电容器充放电和自供电多路复用传感智能目标射手方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First development of transparent wood-based triboelectric nanogenerator (TW-TENG): Cooperative incorporation of transparency, aesthetic of wood, and superior triboelectric properties

First development of transparent wood-based triboelectric nanogenerator (TW-TENG): Cooperative incorporation of transparency, aesthetic of wood, and superior triboelectric properties

The combination of triboelectric nanogenerator (TENG) and wood-based materials offers a sustainable strategy for energy harvesting. The main challenge in realizing wood-based TENG is to increase the polarizabilities of wood. Herein, we introduce the first instance of a transparent wood-based triboelectric nanogenerator (TW-TENG), which synergistically incorporates superior triboelectric properties, optical properties, and aesthetic of wood. Addressing the challenges of weak polarizability and opacity inherent in natural wood, we propose a functionalized modification approach involving delignification and impregnation with UV-curable resin. In this study, leveraging delignification and the strong electron-donating groups within the UV-curable resin, the electrical output performance of TW-TENG is improved by 6.5 times compared to that of natural wood, and maintains stability over 10,000 operational cycles. Moreover, the matching refractive index between the UV-curable resin and the wood substrate offers TW-TENG with high transparency, achieving an optical transmittance of up to 88.8 %, exhibiting the unique aesthetic value of transparent wood. Furthermore, we demonstrate the potential applications of TW-TENG in energy harvesting, sensor technologies, smart decorative materials, smart home systems, and beyond, exemplified through its utilization in electrical output generation by pressing, capacitor charging and discharging, and self-powered multiplexed sensing smart target shooter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信