Christ Devia , Camilo Jara Do Nascimento , Samuel Madariaga , Pedro.E. Maldonado , Catalina Murúa , Rodrigo C. Vergara
{"title":"探索制造思维机器的生物挑战","authors":"Christ Devia , Camilo Jara Do Nascimento , Samuel Madariaga , Pedro.E. Maldonado , Catalina Murúa , Rodrigo C. Vergara","doi":"10.1016/j.cogsys.2024.101260","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents a transdisciplinary analysis of the challenges in fusing neuroscience concepts with artificial intelligence (AI) to create AI systems inspired by biological cognition. We explore the structural and functional disparities between the neocortex’s canonical microcircuits and existing AI models, focusing on architectural differences, learning mechanisms, and energy efficiency. The discussion extends to adapting non-goal-oriented learning and dynamic neuronal connections from biological brains to enhance AI’s flexibility and efficiency. This work underscores the potential of neuroscientific insights to revolutionize AI development, advocating for a paradigm shift towards more adaptable and brain-like AI systems. We conclude that there is major room for bioinspiration by focusing on developing architecture, objective functions, and learning rules using a local instead of a global approach.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring biological challenges in building a thinking machine\",\"authors\":\"Christ Devia , Camilo Jara Do Nascimento , Samuel Madariaga , Pedro.E. Maldonado , Catalina Murúa , Rodrigo C. Vergara\",\"doi\":\"10.1016/j.cogsys.2024.101260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article presents a transdisciplinary analysis of the challenges in fusing neuroscience concepts with artificial intelligence (AI) to create AI systems inspired by biological cognition. We explore the structural and functional disparities between the neocortex’s canonical microcircuits and existing AI models, focusing on architectural differences, learning mechanisms, and energy efficiency. The discussion extends to adapting non-goal-oriented learning and dynamic neuronal connections from biological brains to enhance AI’s flexibility and efficiency. This work underscores the potential of neuroscientific insights to revolutionize AI development, advocating for a paradigm shift towards more adaptable and brain-like AI systems. We conclude that there is major room for bioinspiration by focusing on developing architecture, objective functions, and learning rules using a local instead of a global approach.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389041724000548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041724000548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Exploring biological challenges in building a thinking machine
This article presents a transdisciplinary analysis of the challenges in fusing neuroscience concepts with artificial intelligence (AI) to create AI systems inspired by biological cognition. We explore the structural and functional disparities between the neocortex’s canonical microcircuits and existing AI models, focusing on architectural differences, learning mechanisms, and energy efficiency. The discussion extends to adapting non-goal-oriented learning and dynamic neuronal connections from biological brains to enhance AI’s flexibility and efficiency. This work underscores the potential of neuroscientific insights to revolutionize AI development, advocating for a paradigm shift towards more adaptable and brain-like AI systems. We conclude that there is major room for bioinspiration by focusing on developing architecture, objective functions, and learning rules using a local instead of a global approach.