Yudai Ichikawa, Kanami Sugiyama, Masahiro Higashi, Shuichi Hiraoka, Hirofumi Sato
{"title":"笼状双核钯配合物配位自组装的粗粒度分析","authors":"Yudai Ichikawa, Kanami Sugiyama, Masahiro Higashi, Shuichi Hiraoka, Hirofumi Sato","doi":"10.1093/chemle/upae099","DOIUrl":null,"url":null,"abstract":"\n We propose a coarse-grained analysis to understand coordination self-assembly. The developed model reduced the system into the assembling components that interact mainly electrostatically. The modeled energies sufficiently reproduced the energy changes to produce a caged di-nuclear palladium complex obtained by the density functional theory. The model made it possible to clarify the physicochemical background of the assembly process.","PeriodicalId":9862,"journal":{"name":"Chemistry Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A coarse-grained analysis on coordination self-assembly of a caged dinuclear palladium complex\",\"authors\":\"Yudai Ichikawa, Kanami Sugiyama, Masahiro Higashi, Shuichi Hiraoka, Hirofumi Sato\",\"doi\":\"10.1093/chemle/upae099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We propose a coarse-grained analysis to understand coordination self-assembly. The developed model reduced the system into the assembling components that interact mainly electrostatically. The modeled energies sufficiently reproduced the energy changes to produce a caged di-nuclear palladium complex obtained by the density functional theory. The model made it possible to clarify the physicochemical background of the assembly process.\",\"PeriodicalId\":9862,\"journal\":{\"name\":\"Chemistry Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/chemle/upae099\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chemle/upae099","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A coarse-grained analysis on coordination self-assembly of a caged dinuclear palladium complex
We propose a coarse-grained analysis to understand coordination self-assembly. The developed model reduced the system into the assembling components that interact mainly electrostatically. The modeled energies sufficiently reproduced the energy changes to produce a caged di-nuclear palladium complex obtained by the density functional theory. The model made it possible to clarify the physicochemical background of the assembly process.