主要朗道决定因素

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Claudia Fevola , Sebastian Mizera , Simon Telen
{"title":"主要朗道决定因素","authors":"Claudia Fevola ,&nbsp;Sebastian Mizera ,&nbsp;Simon Telen","doi":"10.1016/j.cpc.2024.109278","DOIUrl":null,"url":null,"abstract":"<div><p>We reformulate the Landau analysis of Feynman integrals with the aim of advancing the state of the art in modern particle-physics computations. We contribute new algorithms for computing Landau singularities, using tools from polyhedral geometry and symbolic/numerical elimination. Inspired by the work of Gelfand, Kapranov, and Zelevinsky (GKZ) on generalized Euler integrals, we define the principal Landau determinant of a Feynman diagram. We illustrate with a number of examples that this algebraic formalism allows to compute many components of the Landau singular locus. We adapt the GKZ framework by carefully specializing Euler integrals to Feynman integrals. For instance, ultraviolet and infrared singularities are detected as irreducible components of an incidence variety, which project dominantly to the kinematic space. We compute principal Landau determinants for the infinite families of one-loop and banana diagrams with different mass configurations, and for a range of cutting-edge Standard Model processes. Our algorithms build on the <span>Julia</span> package <span>Landau.jl</span> and are implemented in the new open-source package <span>PLD.jl</span> available at <span>https://mathrepo.mis.mpg.de/PLD/</span><svg><path></path></svg>.</p></div><div><h3>Program summary</h3><p><em>Program title:</em> <span>PLD.jl</span></p><p><em>CPC Library link to program files:</em> <span>https://doi.org/10.17632/7h5644mm4n.1</span><svg><path></path></svg></p><p><em>Developer's repository link:</em> <span>https://mathrepo.mis.mpg.de/PLD/</span><svg><path></path></svg></p><p><em>Licensing provisions:</em> Creative Commons by 4.0</p><p><em>Programming language:</em> <span>Julia</span></p><p><em>Supplementary material:</em> The repository includes the source code with documentation (PLD_code.zip), a jupyter notebook tutorial providing installation and usage instructions (PLD_notebook.zip), a database containing the output of our algorithm on 114 examples of Feynman integrals (PLD_database.zip).</p><p><em>Nature of problem:</em> A fundamental challenge in scattering amplitude is to determine the values of complexified kinematic invariants for which an amplitude can develop singularities. Bjorken, Landau, and Nakanishi wrote a system of polynomial constraints, nowadays known as the Landau equations. This project aims to rigorously revisit the Landau analysis of the singularity locus of Feynman integrals with a practical view towards explicit computations.</p><p><em>Solution method:</em> We define the principal Landau determinant (PLD), which is a variety inspired by the work of Gelfand, Kapranov, and Zelevinsky (GKZ). We conjecture that it provides a subset of the singularity locus, and we implement effective algorithms to compute its defining equation explicitly.</p><p><em>References:</em> OSCAR <span>[1]</span>, HomotopyContinuation.jl <span>[2]</span>, Landau.jl <span>[3]</span></p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principal Landau determinants\",\"authors\":\"Claudia Fevola ,&nbsp;Sebastian Mizera ,&nbsp;Simon Telen\",\"doi\":\"10.1016/j.cpc.2024.109278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We reformulate the Landau analysis of Feynman integrals with the aim of advancing the state of the art in modern particle-physics computations. We contribute new algorithms for computing Landau singularities, using tools from polyhedral geometry and symbolic/numerical elimination. Inspired by the work of Gelfand, Kapranov, and Zelevinsky (GKZ) on generalized Euler integrals, we define the principal Landau determinant of a Feynman diagram. We illustrate with a number of examples that this algebraic formalism allows to compute many components of the Landau singular locus. We adapt the GKZ framework by carefully specializing Euler integrals to Feynman integrals. For instance, ultraviolet and infrared singularities are detected as irreducible components of an incidence variety, which project dominantly to the kinematic space. We compute principal Landau determinants for the infinite families of one-loop and banana diagrams with different mass configurations, and for a range of cutting-edge Standard Model processes. Our algorithms build on the <span>Julia</span> package <span>Landau.jl</span> and are implemented in the new open-source package <span>PLD.jl</span> available at <span>https://mathrepo.mis.mpg.de/PLD/</span><svg><path></path></svg>.</p></div><div><h3>Program summary</h3><p><em>Program title:</em> <span>PLD.jl</span></p><p><em>CPC Library link to program files:</em> <span>https://doi.org/10.17632/7h5644mm4n.1</span><svg><path></path></svg></p><p><em>Developer's repository link:</em> <span>https://mathrepo.mis.mpg.de/PLD/</span><svg><path></path></svg></p><p><em>Licensing provisions:</em> Creative Commons by 4.0</p><p><em>Programming language:</em> <span>Julia</span></p><p><em>Supplementary material:</em> The repository includes the source code with documentation (PLD_code.zip), a jupyter notebook tutorial providing installation and usage instructions (PLD_notebook.zip), a database containing the output of our algorithm on 114 examples of Feynman integrals (PLD_database.zip).</p><p><em>Nature of problem:</em> A fundamental challenge in scattering amplitude is to determine the values of complexified kinematic invariants for which an amplitude can develop singularities. Bjorken, Landau, and Nakanishi wrote a system of polynomial constraints, nowadays known as the Landau equations. This project aims to rigorously revisit the Landau analysis of the singularity locus of Feynman integrals with a practical view towards explicit computations.</p><p><em>Solution method:</em> We define the principal Landau determinant (PLD), which is a variety inspired by the work of Gelfand, Kapranov, and Zelevinsky (GKZ). We conjecture that it provides a subset of the singularity locus, and we implement effective algorithms to compute its defining equation explicitly.</p><p><em>References:</em> OSCAR <span>[1]</span>, HomotopyContinuation.jl <span>[2]</span>, Landau.jl <span>[3]</span></p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002017\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002017","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们重新阐述了费曼积分的朗道分析,旨在推动现代粒子物理学计算的发展。我们利用多面体几何和符号/数值消除工具,为计算朗道奇点贡献了新算法。受 Gelfand、Kapranov 和 Zelevinsky (GKZ) 有关广义欧拉积分的研究启发,我们定义了费曼图的主朗道行列式。我们用一些例子说明,这种代数形式可以计算朗道奇异点的许多分量。我们通过仔细地将欧拉积分特殊化为费曼积分来调整 GKZ 框架。例如,紫外和红外奇点被检测为入射变体的不可还原分量,它们主要投影到运动空间。我们计算了具有不同质量配置的单环图和香蕉图的无限系列以及一系列尖端标准模型过程的主朗道行列式。我们的算法建立在 Julia 软件包 Landau.jl 的基础上,并在新的开源软件包 PLD.jl 中实现,请访问 https://mathrepo.mis.mpg.de/PLD/.Program summaryProgram title:PLD.jlCPC 库的程序文件链接:https://doi.org/10.17632/7h5644mm4n.1Developer's repository 链接:https://mathrepo.mis.mpg.de/PLD/Licensing provisions:Creative Commons by 4.0编程语言:Julia补充材料:问题的性质:散射振幅的一个基本挑战是确定振幅可能出现奇点的复合运动学不变式的值。比约肯(Bjorken)、朗道(Landau)和中西(Nakanishi)写了一个多项式约束系统,如今被称为朗道方程。本项目旨在重新对费曼积分奇点位置的朗道分析进行严格研究,并着眼于实际的显式计算:我们定义了主朗道行列式(PLD),它是受格尔凡德、卡普拉诺夫和泽列文斯基(GKZ)的工作启发而产生的一个变量。我们猜想它提供了奇点位置的一个子集,并实现了显式计算其定义方程的有效算法:OSCAR [1], HomotopyContinuation.jl [2], Landau.jl [3].
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principal Landau determinants

We reformulate the Landau analysis of Feynman integrals with the aim of advancing the state of the art in modern particle-physics computations. We contribute new algorithms for computing Landau singularities, using tools from polyhedral geometry and symbolic/numerical elimination. Inspired by the work of Gelfand, Kapranov, and Zelevinsky (GKZ) on generalized Euler integrals, we define the principal Landau determinant of a Feynman diagram. We illustrate with a number of examples that this algebraic formalism allows to compute many components of the Landau singular locus. We adapt the GKZ framework by carefully specializing Euler integrals to Feynman integrals. For instance, ultraviolet and infrared singularities are detected as irreducible components of an incidence variety, which project dominantly to the kinematic space. We compute principal Landau determinants for the infinite families of one-loop and banana diagrams with different mass configurations, and for a range of cutting-edge Standard Model processes. Our algorithms build on the Julia package Landau.jl and are implemented in the new open-source package PLD.jl available at https://mathrepo.mis.mpg.de/PLD/.

Program summary

Program title: PLD.jl

CPC Library link to program files: https://doi.org/10.17632/7h5644mm4n.1

Developer's repository link: https://mathrepo.mis.mpg.de/PLD/

Licensing provisions: Creative Commons by 4.0

Programming language: Julia

Supplementary material: The repository includes the source code with documentation (PLD_code.zip), a jupyter notebook tutorial providing installation and usage instructions (PLD_notebook.zip), a database containing the output of our algorithm on 114 examples of Feynman integrals (PLD_database.zip).

Nature of problem: A fundamental challenge in scattering amplitude is to determine the values of complexified kinematic invariants for which an amplitude can develop singularities. Bjorken, Landau, and Nakanishi wrote a system of polynomial constraints, nowadays known as the Landau equations. This project aims to rigorously revisit the Landau analysis of the singularity locus of Feynman integrals with a practical view towards explicit computations.

Solution method: We define the principal Landau determinant (PLD), which is a variety inspired by the work of Gelfand, Kapranov, and Zelevinsky (GKZ). We conjecture that it provides a subset of the singularity locus, and we implement effective algorithms to compute its defining equation explicitly.

References: OSCAR [1], HomotopyContinuation.jl [2], Landau.jl [3]

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信