二维纳米材料的压电性--晶体结构和极化方向

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Adila Rani , Sang Don Bu
{"title":"二维纳米材料的压电性--晶体结构和极化方向","authors":"Adila Rani ,&nbsp;Sang Don Bu","doi":"10.1016/j.cap.2024.06.009","DOIUrl":null,"url":null,"abstract":"<div><p>Materials that produce electric charges in response to a mechanical load are known as piezoelectric materials. Materials with a lattice structure devoid of centosymmetry exhibit piezoelectric activity. These days, non-centrosymmetric 2D nanomaterials have been used in many possible applications and have attracted a lot of attention as piezoelectric materials. The crystal structure, crystal nonsymmetry, and nonzero electronic bandgap energy values of two-dimensional nanomaterials have a significant influence on their piezoelectric capabilities. For example, it was discovered that the symmetry of certain mono- or few-layered 2D nanomaterials differed from that of their bulk counterparts. Piezoelectricity is found at the atomic thickness level in many 2D monolayer materials with structurally broken symmetry, but it gradually vanishes with increasing thickness. Secondly, there is a strong correlation between this piezoelectric action and the polarization direction. In this sense, improving the piezoelectric capabilities in 2D mono, few, and multilayer nanomaterials requires a deeper comprehension of the crystal structure and direction of polarization. Based on theoretical and experimental findings, the crystal structure and direction of polarization of various 2D nanomaterials will be the main topics of this review. We will also discuss recent developments and applications of various 2D nanomaterials.</p></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"66 ","pages":"Pages 1-23"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezoelectricity in 2D nanomaterials-crystal structure and polarization direction\",\"authors\":\"Adila Rani ,&nbsp;Sang Don Bu\",\"doi\":\"10.1016/j.cap.2024.06.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Materials that produce electric charges in response to a mechanical load are known as piezoelectric materials. Materials with a lattice structure devoid of centosymmetry exhibit piezoelectric activity. These days, non-centrosymmetric 2D nanomaterials have been used in many possible applications and have attracted a lot of attention as piezoelectric materials. The crystal structure, crystal nonsymmetry, and nonzero electronic bandgap energy values of two-dimensional nanomaterials have a significant influence on their piezoelectric capabilities. For example, it was discovered that the symmetry of certain mono- or few-layered 2D nanomaterials differed from that of their bulk counterparts. Piezoelectricity is found at the atomic thickness level in many 2D monolayer materials with structurally broken symmetry, but it gradually vanishes with increasing thickness. Secondly, there is a strong correlation between this piezoelectric action and the polarization direction. In this sense, improving the piezoelectric capabilities in 2D mono, few, and multilayer nanomaterials requires a deeper comprehension of the crystal structure and direction of polarization. Based on theoretical and experimental findings, the crystal structure and direction of polarization of various 2D nanomaterials will be the main topics of this review. We will also discuss recent developments and applications of various 2D nanomaterials.</p></div>\",\"PeriodicalId\":11037,\"journal\":{\"name\":\"Current Applied Physics\",\"volume\":\"66 \",\"pages\":\"Pages 1-23\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567173924001330\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924001330","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在机械负载作用下产生电荷的材料被称为压电材料。具有非中心对称晶格结构的材料具有压电活性。如今,非中心对称二维纳米材料已被广泛应用,并作为压电材料引起了广泛关注。二维纳米材料的晶体结构、晶体非对称性和非零电子带隙能值对其压电能力有重要影响。例如,人们发现某些单层或少层二维纳米材料的对称性与其块体材料的对称性不同。在许多具有结构断裂对称性的二维单层材料中,压电性在原子厚度水平上被发现,但随着厚度的增加,压电性逐渐消失。其次,这种压电作用与极化方向有很强的相关性。从这个意义上讲,要提高二维单层、少层和多层纳米材料的压电能力,就必须深入理解晶体结构和极化方向。基于理论和实验研究结果,本综述将以各种二维纳米材料的晶体结构和极化方向为主题。我们还将讨论各种二维纳米材料的最新发展和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Piezoelectricity in 2D nanomaterials-crystal structure and polarization direction

Piezoelectricity in 2D nanomaterials-crystal structure and polarization direction

Materials that produce electric charges in response to a mechanical load are known as piezoelectric materials. Materials with a lattice structure devoid of centosymmetry exhibit piezoelectric activity. These days, non-centrosymmetric 2D nanomaterials have been used in many possible applications and have attracted a lot of attention as piezoelectric materials. The crystal structure, crystal nonsymmetry, and nonzero electronic bandgap energy values of two-dimensional nanomaterials have a significant influence on their piezoelectric capabilities. For example, it was discovered that the symmetry of certain mono- or few-layered 2D nanomaterials differed from that of their bulk counterparts. Piezoelectricity is found at the atomic thickness level in many 2D monolayer materials with structurally broken symmetry, but it gradually vanishes with increasing thickness. Secondly, there is a strong correlation between this piezoelectric action and the polarization direction. In this sense, improving the piezoelectric capabilities in 2D mono, few, and multilayer nanomaterials requires a deeper comprehension of the crystal structure and direction of polarization. Based on theoretical and experimental findings, the crystal structure and direction of polarization of various 2D nanomaterials will be the main topics of this review. We will also discuss recent developments and applications of various 2D nanomaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信