V. Camplone , A. Zinzi , M. Massironi , A.P. Rossi , F. Zucca
{"title":"增强行星表面地质分析 MATISSE 工具:对水星中央凹坑的研究","authors":"V. Camplone , A. Zinzi , M. Massironi , A.P. Rossi , F. Zucca","doi":"10.1016/j.ascom.2024.100852","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we present the improved capabilities of MATISSE (Multi-purpose Advanced Tool for Instruments for the Solar System Exploration) tool which is now able to integrate geological maps and analyze specific data based on selected parameters (target, mission, instrument, geological units and area of interest). To demonstrate the effectiveness of this approach we focused on “central pit” craters on Mercury, with particular regard to the ones exposed in the Hokusai, Victoria, and Derain quadrangles.</p><p>The use of MATISSE for this application allowed us for an analysis of these morphologies, confirming a tendency for their location on volcanic terrains. The integrated research approach adopted in this study has proven to be a significant advantage in geological analysis, accelerating the process of data collection and interpretation. In conclusion, this study shows how the continuous evolution of scientific tools devoted to data handling and management based on FAIR principles, such as MATISSE, has the potential to open new perspectives in understanding planetary-scale geological processes.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"48 ","pages":"Article 100852"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213133724000672/pdfft?md5=14329405866db02079ed860ee55a31b3&pid=1-s2.0-S2213133724000672-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancement of the MATISSE tool for the geological analysis of planetary surfaces: A study on central pit craters on Mercury\",\"authors\":\"V. Camplone , A. Zinzi , M. Massironi , A.P. Rossi , F. Zucca\",\"doi\":\"10.1016/j.ascom.2024.100852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work we present the improved capabilities of MATISSE (Multi-purpose Advanced Tool for Instruments for the Solar System Exploration) tool which is now able to integrate geological maps and analyze specific data based on selected parameters (target, mission, instrument, geological units and area of interest). To demonstrate the effectiveness of this approach we focused on “central pit” craters on Mercury, with particular regard to the ones exposed in the Hokusai, Victoria, and Derain quadrangles.</p><p>The use of MATISSE for this application allowed us for an analysis of these morphologies, confirming a tendency for their location on volcanic terrains. The integrated research approach adopted in this study has proven to be a significant advantage in geological analysis, accelerating the process of data collection and interpretation. In conclusion, this study shows how the continuous evolution of scientific tools devoted to data handling and management based on FAIR principles, such as MATISSE, has the potential to open new perspectives in understanding planetary-scale geological processes.</p></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"48 \",\"pages\":\"Article 100852\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213133724000672/pdfft?md5=14329405866db02079ed860ee55a31b3&pid=1-s2.0-S2213133724000672-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133724000672\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000672","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Enhancement of the MATISSE tool for the geological analysis of planetary surfaces: A study on central pit craters on Mercury
In this work we present the improved capabilities of MATISSE (Multi-purpose Advanced Tool for Instruments for the Solar System Exploration) tool which is now able to integrate geological maps and analyze specific data based on selected parameters (target, mission, instrument, geological units and area of interest). To demonstrate the effectiveness of this approach we focused on “central pit” craters on Mercury, with particular regard to the ones exposed in the Hokusai, Victoria, and Derain quadrangles.
The use of MATISSE for this application allowed us for an analysis of these morphologies, confirming a tendency for their location on volcanic terrains. The integrated research approach adopted in this study has proven to be a significant advantage in geological analysis, accelerating the process of data collection and interpretation. In conclusion, this study shows how the continuous evolution of scientific tools devoted to data handling and management based on FAIR principles, such as MATISSE, has the potential to open new perspectives in understanding planetary-scale geological processes.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.