{"title":"三维打印多功能发泡混凝土建筑构件:材料特性、构件设计和三维打印应用","authors":"","doi":"10.1016/j.dibe.2024.100483","DOIUrl":null,"url":null,"abstract":"<div><div>The use of multi-density foamed concretes (FCs) to produce multi-functional building components by 3D Concrete Printing (3DCP) is investigated. The use of medium-density 3D-printed foamed concrete (3DPFC_800), primarily serving a load-bearing role, and ultra-lightweight foamed concrete (ULFC_300), as thermal insulation material poured in the voids defined by the former, is proposed. This enables meeting diverse performance requirements within a single cementitious matrix, eliminating the need for multiple materials. The main properties of the proposed mixes are investigated. The compressive strength and thermal conductivity are equal to 7.04 MPa and 0.205 W/mK, and 1.43 MPa and 0.072 W/mK for 3DPFC_800 and ULFC_300, respectively. A successful 2D-printing test validates the suitability of 3DPFC_800 for 3DCP, and a robotic arm is employed for 3DCP tests. The proposed application allows for further knowledge on the use of FC in 3DCP and the identification of some issues and challenges that still need to be addressed.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-printed multi-functional foamed concrete building components: Material properties, component design, and 3D printing application\",\"authors\":\"\",\"doi\":\"10.1016/j.dibe.2024.100483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of multi-density foamed concretes (FCs) to produce multi-functional building components by 3D Concrete Printing (3DCP) is investigated. The use of medium-density 3D-printed foamed concrete (3DPFC_800), primarily serving a load-bearing role, and ultra-lightweight foamed concrete (ULFC_300), as thermal insulation material poured in the voids defined by the former, is proposed. This enables meeting diverse performance requirements within a single cementitious matrix, eliminating the need for multiple materials. The main properties of the proposed mixes are investigated. The compressive strength and thermal conductivity are equal to 7.04 MPa and 0.205 W/mK, and 1.43 MPa and 0.072 W/mK for 3DPFC_800 and ULFC_300, respectively. A successful 2D-printing test validates the suitability of 3DPFC_800 for 3DCP, and a robotic arm is employed for 3DCP tests. The proposed application allows for further knowledge on the use of FC in 3DCP and the identification of some issues and challenges that still need to be addressed.</div></div>\",\"PeriodicalId\":34137,\"journal\":{\"name\":\"Developments in the Built Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developments in the Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666165924001649\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924001649","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
3D-printed multi-functional foamed concrete building components: Material properties, component design, and 3D printing application
The use of multi-density foamed concretes (FCs) to produce multi-functional building components by 3D Concrete Printing (3DCP) is investigated. The use of medium-density 3D-printed foamed concrete (3DPFC_800), primarily serving a load-bearing role, and ultra-lightweight foamed concrete (ULFC_300), as thermal insulation material poured in the voids defined by the former, is proposed. This enables meeting diverse performance requirements within a single cementitious matrix, eliminating the need for multiple materials. The main properties of the proposed mixes are investigated. The compressive strength and thermal conductivity are equal to 7.04 MPa and 0.205 W/mK, and 1.43 MPa and 0.072 W/mK for 3DPFC_800 and ULFC_300, respectively. A successful 2D-printing test validates the suitability of 3DPFC_800 for 3DCP, and a robotic arm is employed for 3DCP tests. The proposed application allows for further knowledge on the use of FC in 3DCP and the identification of some issues and challenges that still need to be addressed.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.