基于血液生化测试分析的运动员代谢活动预测模型

IF 2.3 Q2 SPORT SCIENCES
Victoria A. Zaborova , Evgenii I. Balakin , Ksenia A. Yurku , Olga E. Aprishko , Vasiliy I. Pustovoyt
{"title":"基于血液生化测试分析的运动员代谢活动预测模型","authors":"Victoria A. Zaborova ,&nbsp;Evgenii I. Balakin ,&nbsp;Ksenia A. Yurku ,&nbsp;Olga E. Aprishko ,&nbsp;Vasiliy I. Pustovoyt","doi":"10.1016/j.smhs.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the efficiency of athletic performance and reducing the likelihood of overtraining are primarily determined goals that can be achieved by the correct organization of the training process. The nature of adaptation to physical stress is associated with the specificity, focus, and degree of biochemical and functional changes that occur during muscular work. In this study, we aimed to develop a diagnostic model for predicting metabolic processes in athletes based on standard biochemical blood analysis indicators. The study involved athletes from the track and field athletics team (men, <em>n</em> ​= ​42, average age was [22.55 ​± ​3.68] years). Blood samples were collected in the morning at the beginning and end of the training week during the annual cycle. During the entire period, 3 625 laboratory parameter tests were conducted. Capillary blood sampling in athletes was conducted from the distal phalanx of the finger after overnight fasting, according to standard diagnostic procedures. To determine the predominance of anabolic or catabolic processes, equations were derived from a linear discriminant function. The discriminant function of predicting metabolic processes in athletes has a high information capacity (92.1%), as confirmed by the biochemical results of neuroendocrine system activity, which characterized the body's stage of adaptive regulatory mechanisms in response to stress factors. The classification matrix used to predict the metabolic processes based on the results of the discriminant function calculation demonstrates the statistical significance of the model (<em>p</em> ​&lt; ​0.01). Consequently, an informative mathematical model was developed, which enabled the reliable and timely prediction of the prevalence of one of the metabolic activity phases in the athlete's body. The use of the developed model will also allow us to assess the nature of adaptation to specific muscular work, identify an athlete's weaknesses, forecast the success of their performance, and timely adjust both the training process and the recovery program.</div></div>","PeriodicalId":33620,"journal":{"name":"Sports Medicine and Health Science","volume":"7 3","pages":"Pages 202-207"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model for predicting metabolic activity in athletes based on biochemical blood test analysis\",\"authors\":\"Victoria A. Zaborova ,&nbsp;Evgenii I. Balakin ,&nbsp;Ksenia A. Yurku ,&nbsp;Olga E. Aprishko ,&nbsp;Vasiliy I. Pustovoyt\",\"doi\":\"10.1016/j.smhs.2024.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Improving the efficiency of athletic performance and reducing the likelihood of overtraining are primarily determined goals that can be achieved by the correct organization of the training process. The nature of adaptation to physical stress is associated with the specificity, focus, and degree of biochemical and functional changes that occur during muscular work. In this study, we aimed to develop a diagnostic model for predicting metabolic processes in athletes based on standard biochemical blood analysis indicators. The study involved athletes from the track and field athletics team (men, <em>n</em> ​= ​42, average age was [22.55 ​± ​3.68] years). Blood samples were collected in the morning at the beginning and end of the training week during the annual cycle. During the entire period, 3 625 laboratory parameter tests were conducted. Capillary blood sampling in athletes was conducted from the distal phalanx of the finger after overnight fasting, according to standard diagnostic procedures. To determine the predominance of anabolic or catabolic processes, equations were derived from a linear discriminant function. The discriminant function of predicting metabolic processes in athletes has a high information capacity (92.1%), as confirmed by the biochemical results of neuroendocrine system activity, which characterized the body's stage of adaptive regulatory mechanisms in response to stress factors. The classification matrix used to predict the metabolic processes based on the results of the discriminant function calculation demonstrates the statistical significance of the model (<em>p</em> ​&lt; ​0.01). Consequently, an informative mathematical model was developed, which enabled the reliable and timely prediction of the prevalence of one of the metabolic activity phases in the athlete's body. The use of the developed model will also allow us to assess the nature of adaptation to specific muscular work, identify an athlete's weaknesses, forecast the success of their performance, and timely adjust both the training process and the recovery program.</div></div>\",\"PeriodicalId\":33620,\"journal\":{\"name\":\"Sports Medicine and Health Science\",\"volume\":\"7 3\",\"pages\":\"Pages 202-207\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Medicine and Health Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666337624000672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine and Health Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666337624000672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model for predicting metabolic activity in athletes based on biochemical blood test analysis
Improving the efficiency of athletic performance and reducing the likelihood of overtraining are primarily determined goals that can be achieved by the correct organization of the training process. The nature of adaptation to physical stress is associated with the specificity, focus, and degree of biochemical and functional changes that occur during muscular work. In this study, we aimed to develop a diagnostic model for predicting metabolic processes in athletes based on standard biochemical blood analysis indicators. The study involved athletes from the track and field athletics team (men, n ​= ​42, average age was [22.55 ​± ​3.68] years). Blood samples were collected in the morning at the beginning and end of the training week during the annual cycle. During the entire period, 3 625 laboratory parameter tests were conducted. Capillary blood sampling in athletes was conducted from the distal phalanx of the finger after overnight fasting, according to standard diagnostic procedures. To determine the predominance of anabolic or catabolic processes, equations were derived from a linear discriminant function. The discriminant function of predicting metabolic processes in athletes has a high information capacity (92.1%), as confirmed by the biochemical results of neuroendocrine system activity, which characterized the body's stage of adaptive regulatory mechanisms in response to stress factors. The classification matrix used to predict the metabolic processes based on the results of the discriminant function calculation demonstrates the statistical significance of the model (p ​< ​0.01). Consequently, an informative mathematical model was developed, which enabled the reliable and timely prediction of the prevalence of one of the metabolic activity phases in the athlete's body. The use of the developed model will also allow us to assess the nature of adaptation to specific muscular work, identify an athlete's weaknesses, forecast the success of their performance, and timely adjust both the training process and the recovery program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sports Medicine and Health Science
Sports Medicine and Health Science Health Professions-Physical Therapy, Sports Therapy and Rehabilitation
CiteScore
5.50
自引率
0.00%
发文量
36
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信