{"title":"整合遥感和 3-PG 模型模拟欧洲桤木人工林的生物量和碳储量","authors":"Yu Bai, Yong Pang, Dan Kong","doi":"10.1016/j.fecs.2024.100213","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials. Recent studies have shown that integrating process-based models (PBMs) with remote sensing data can enhance simulations from stand to regional scales, significantly improving the ability to simulate forest growth and carbon stock dynamics. However, the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited. In this study, we applied the parameterized 3-PG (Physiological Principles Predicting Growth) model across the Mengjiagang Forest Farm (MFF) to make broad-scale predictions of the biomass and carbon stocks of <em>Larix olgensis</em> plantation. The model was used to simulate average diameter at breast height (DBH) and total biomass, which were later validated with a wide range of observation data including sample plot data, forest management inventory data, and airborne laser scanning data. The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale, with determination coefficients ranging from 0.78 to 0.88. Based on the estimation of total biomass, we successfully produced a carbon stock map of the <em>Larix olgensis</em> plantation in MFF with a spatial resolution of 20 m, which helps with relevant management advice. These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales. In addition, this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.</p></div>","PeriodicalId":54270,"journal":{"name":"Forest Ecosystems","volume":"11 ","pages":"Article 100213"},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2197562024000496/pdfft?md5=b78edfda8511a9b043b3ed6f02a8b9cc&pid=1-s2.0-S2197562024000496-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Integrating remote sensing and 3-PG model to simulate the biomass and carbon stock of Larix olgensis plantation\",\"authors\":\"Yu Bai, Yong Pang, Dan Kong\",\"doi\":\"10.1016/j.fecs.2024.100213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials. Recent studies have shown that integrating process-based models (PBMs) with remote sensing data can enhance simulations from stand to regional scales, significantly improving the ability to simulate forest growth and carbon stock dynamics. However, the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited. In this study, we applied the parameterized 3-PG (Physiological Principles Predicting Growth) model across the Mengjiagang Forest Farm (MFF) to make broad-scale predictions of the biomass and carbon stocks of <em>Larix olgensis</em> plantation. The model was used to simulate average diameter at breast height (DBH) and total biomass, which were later validated with a wide range of observation data including sample plot data, forest management inventory data, and airborne laser scanning data. The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale, with determination coefficients ranging from 0.78 to 0.88. Based on the estimation of total biomass, we successfully produced a carbon stock map of the <em>Larix olgensis</em> plantation in MFF with a spatial resolution of 20 m, which helps with relevant management advice. These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales. In addition, this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.</p></div>\",\"PeriodicalId\":54270,\"journal\":{\"name\":\"Forest Ecosystems\",\"volume\":\"11 \",\"pages\":\"Article 100213\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2197562024000496/pdfft?md5=b78edfda8511a9b043b3ed6f02a8b9cc&pid=1-s2.0-S2197562024000496-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forest Ecosystems\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2197562024000496\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forest Ecosystems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2197562024000496","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Integrating remote sensing and 3-PG model to simulate the biomass and carbon stock of Larix olgensis plantation
Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials. Recent studies have shown that integrating process-based models (PBMs) with remote sensing data can enhance simulations from stand to regional scales, significantly improving the ability to simulate forest growth and carbon stock dynamics. However, the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited. In this study, we applied the parameterized 3-PG (Physiological Principles Predicting Growth) model across the Mengjiagang Forest Farm (MFF) to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation. The model was used to simulate average diameter at breast height (DBH) and total biomass, which were later validated with a wide range of observation data including sample plot data, forest management inventory data, and airborne laser scanning data. The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale, with determination coefficients ranging from 0.78 to 0.88. Based on the estimation of total biomass, we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m, which helps with relevant management advice. These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales. In addition, this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans.
Forest EcosystemsEnvironmental Science-Nature and Landscape Conservation
CiteScore
7.10
自引率
4.90%
发文量
1115
审稿时长
22 days
期刊介绍:
Forest Ecosystems is an open access, peer-reviewed journal publishing scientific communications from any discipline that can provide interesting contributions about the structure and dynamics of "natural" and "domesticated" forest ecosystems, and their services to people. The journal welcomes innovative science as well as application oriented work that will enhance understanding of woody plant communities. Very specific studies are welcome if they are part of a thematic series that provides some holistic perspective that is of general interest.