Rosane G. Collevatti , Marcela Castañeda , Silane A.F. Silva-Caminha , Carlos Jaramillo
{"title":"应用激光共聚焦显微镜鉴定现代和化石花粉粒,以棕榈科毛利人属为例","authors":"Rosane G. Collevatti , Marcela Castañeda , Silane A.F. Silva-Caminha , Carlos Jaramillo","doi":"10.1016/j.revpalbo.2024.105140","DOIUrl":null,"url":null,"abstract":"<div><p>Confocal scanning laser microscopy (CSLM) is becoming a powerful tool for palynological studies. CSLM allows palynomorph image sectioning, internal and surface structures visualization, and 3D reconstruction at a higher resolution than standard light microscopy without extra processing. CSLM images are suitable for several image analysis techniques that could help improve the accuracy and reproducibility of taxa identification. Here, using the palm subtribe Mauritiinae (Arecaceae: Calamoideae: Lepidocaryeae) as a model group, we identify modern and fossil pollen grains using CSLM images coupled with ImageJ/Fiji 1.54f plugins and machine learning statistical analyses. Modern taxa pollen grains including <em>Lepidocaryum tenue Mart.</em>, <em>Mauritia flexuosa L.f., Mauritiella armata (Mart.) Burret</em> and <em>Mauritiella aculeata (Kunth) Burret</em> were obtained from Smithsonian Tropical Research Institute (STRI) pollen collection or herbarium exsiccates. Fossil pollen of <em>Grimsdalea magnaclavata Germeraad</em> et al. <em>1968</em>, and <em>Mauritiidites franciscoi</em> (van der Hammen) van der Hammen & Garcia de Mutis 1966, both from Miocene, and <em>Mauritia</em> pollen type from Holocene were obtained from STRI collection. We measured nine shape and exine quantitative parameters, and one qualitative parameter (pollen aperture). Pollen volume was the most important variable (28.270 mean decrease accuracy), followed by pollen aperture (15.003), Skewness (13.466), and spine density (10.246). The machine learning analysis, which included CART and Random Forests, correctly identified both fossil and extant grains. CSLM and the quantitative analysis of morphological traits are a new frontier in palynological studies.</p></div>","PeriodicalId":54488,"journal":{"name":"Review of Palaeobotany and Palynology","volume":"327 ","pages":"Article 105140"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of confocal laser microscopy for identification of modern and fossil pollen grains, an example in palm Mauritiinae\",\"authors\":\"Rosane G. Collevatti , Marcela Castañeda , Silane A.F. Silva-Caminha , Carlos Jaramillo\",\"doi\":\"10.1016/j.revpalbo.2024.105140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Confocal scanning laser microscopy (CSLM) is becoming a powerful tool for palynological studies. CSLM allows palynomorph image sectioning, internal and surface structures visualization, and 3D reconstruction at a higher resolution than standard light microscopy without extra processing. CSLM images are suitable for several image analysis techniques that could help improve the accuracy and reproducibility of taxa identification. Here, using the palm subtribe Mauritiinae (Arecaceae: Calamoideae: Lepidocaryeae) as a model group, we identify modern and fossil pollen grains using CSLM images coupled with ImageJ/Fiji 1.54f plugins and machine learning statistical analyses. Modern taxa pollen grains including <em>Lepidocaryum tenue Mart.</em>, <em>Mauritia flexuosa L.f., Mauritiella armata (Mart.) Burret</em> and <em>Mauritiella aculeata (Kunth) Burret</em> were obtained from Smithsonian Tropical Research Institute (STRI) pollen collection or herbarium exsiccates. Fossil pollen of <em>Grimsdalea magnaclavata Germeraad</em> et al. <em>1968</em>, and <em>Mauritiidites franciscoi</em> (van der Hammen) van der Hammen & Garcia de Mutis 1966, both from Miocene, and <em>Mauritia</em> pollen type from Holocene were obtained from STRI collection. We measured nine shape and exine quantitative parameters, and one qualitative parameter (pollen aperture). Pollen volume was the most important variable (28.270 mean decrease accuracy), followed by pollen aperture (15.003), Skewness (13.466), and spine density (10.246). The machine learning analysis, which included CART and Random Forests, correctly identified both fossil and extant grains. CSLM and the quantitative analysis of morphological traits are a new frontier in palynological studies.</p></div>\",\"PeriodicalId\":54488,\"journal\":{\"name\":\"Review of Palaeobotany and Palynology\",\"volume\":\"327 \",\"pages\":\"Article 105140\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Palaeobotany and Palynology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034666724000915\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PALEONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Palaeobotany and Palynology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034666724000915","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
共焦扫描激光显微镜(CSLM)正在成为古乐彩网学研究的强大工具。与标准的光学显微镜相比,共聚焦扫描激光显微镜无需额外处理即可实现更高分辨率的古乐彩网图像切片、内部和表面结构可视化以及三维重建。CSLM 图像适用于多种图像分析技术,有助于提高分类鉴定的准确性和可重复性。在此,我们使用 CSLM 图像,结合 ImageJ/Fiji 1.54f 插件和机器学习统计分析,以棕榈亚科毛利蒂亚科(Arecaceae: Calamoideae: Lepidocaryeae)为模型组,识别了现代和化石花粉粒。现代类群花粉粒包括 Lepidocaryum tenue Mart.、Mauritia flexuosa L.f.、Mauritiella armata (Mart.) Burret 和 Mauritiella aculeata (Kunth) Burret,均来自史密森尼热带研究所(STRI)的花粉收集或标本馆的样品。Grimsdalea magnaclavata Germeraad 等人 1968 年的花粉化石和 Mauritiidites franciscoi (van der Hammen) van der Hammen & Garcia de Mutis 1966 年的花粉化石(均来自中新世)以及全新世的毛里求斯花粉类型均来自史密森尼热带研究所的收藏。我们测量了九个形状和外皮定量参数,以及一个定性参数(花粉孔径)。花粉体积是最重要的变量(平均降低精度为 28.270),其次是花粉孔径(15.003)、偏斜度(13.466)和脊柱密度(10.246)。包括 CART 和随机森林在内的机器学习分析能够正确识别化石和现存谷物。CSLM 和形态特征定量分析是古植物学研究的一个新领域。
Application of confocal laser microscopy for identification of modern and fossil pollen grains, an example in palm Mauritiinae
Confocal scanning laser microscopy (CSLM) is becoming a powerful tool for palynological studies. CSLM allows palynomorph image sectioning, internal and surface structures visualization, and 3D reconstruction at a higher resolution than standard light microscopy without extra processing. CSLM images are suitable for several image analysis techniques that could help improve the accuracy and reproducibility of taxa identification. Here, using the palm subtribe Mauritiinae (Arecaceae: Calamoideae: Lepidocaryeae) as a model group, we identify modern and fossil pollen grains using CSLM images coupled with ImageJ/Fiji 1.54f plugins and machine learning statistical analyses. Modern taxa pollen grains including Lepidocaryum tenue Mart., Mauritia flexuosa L.f., Mauritiella armata (Mart.) Burret and Mauritiella aculeata (Kunth) Burret were obtained from Smithsonian Tropical Research Institute (STRI) pollen collection or herbarium exsiccates. Fossil pollen of Grimsdalea magnaclavata Germeraad et al. 1968, and Mauritiidites franciscoi (van der Hammen) van der Hammen & Garcia de Mutis 1966, both from Miocene, and Mauritia pollen type from Holocene were obtained from STRI collection. We measured nine shape and exine quantitative parameters, and one qualitative parameter (pollen aperture). Pollen volume was the most important variable (28.270 mean decrease accuracy), followed by pollen aperture (15.003), Skewness (13.466), and spine density (10.246). The machine learning analysis, which included CART and Random Forests, correctly identified both fossil and extant grains. CSLM and the quantitative analysis of morphological traits are a new frontier in palynological studies.
期刊介绍:
The Review of Palaeobotany and Palynology is an international journal for articles in all fields of palaeobotany and palynology dealing with all groups, ranging from marine palynomorphs to higher land plants. Original contributions and comprehensive review papers should appeal to an international audience. Typical topics include but are not restricted to systematics, evolution, palaeobiology, palaeoecology, biostratigraphy, biochronology, palaeoclimatology, paleogeography, taphonomy, palaeoenvironmental reconstructions, vegetation history, and practical applications of palaeobotany and palynology, e.g. in coal and petroleum geology and archaeology. The journal especially encourages the publication of articles in which palaeobotany and palynology are applied for solving fundamental geological and biological problems as well as innovative and interdisciplinary approaches.