用 Heun 泛函求解二阶均质微分方程

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Shayea Aldossari
{"title":"用 Heun 泛函求解二阶均质微分方程","authors":"Shayea Aldossari","doi":"10.1016/j.jsc.2024.102347","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present an algorithm that checks if a second-order differential operator <span><math><mi>L</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>[</mo><mo>∂</mo><mo>]</mo></math></span> can be reduced to the general Heun's differential operator. The algorithm detects the parameters of the transformations in <span><math><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>[</mo><mo>∂</mo><mo>]</mo></math></span> that transfer the general Heun's differential operator to the operator <em>L</em> whose solutions are of the form<span><span><span>(1)</span><span><math><mrow><mi>exp</mi></mrow><mo>(</mo><mo>∫</mo><mi>r</mi><mspace></mspace><mi>d</mi><mi>x</mi><mo>)</mo><mo>⋅</mo><mrow><mi>HeunG</mi></mrow><mo>(</mo><mi>a</mi><mo>,</mo><mspace></mspace><mi>q</mi><mo>;</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>,</mo><mi>δ</mi><mo>;</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mo>{</mo><mi>α</mi><mo>,</mo><mspace></mspace><mi>β</mi><mo>,</mo><mspace></mspace><mi>δ</mi><mo>,</mo><mspace></mspace><mi>γ</mi><mo>}</mo><mo>∈</mo><mi>Q</mi><mo>∖</mo><mi>Z</mi></math></span>, the functions <span><math><mi>r</mi><mo>,</mo><mspace></mspace><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, and <span><math><mi>C</mi><mo>(</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> is a subfield of <span><math><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> of index 2 or 3 or <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>a</mi><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>b</mi></mrow><mrow><mi>c</mi><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>d</mi></mrow></mfrac></math></span> for some <em>n</em> in <span><math><mi>N</mi><mo>∖</mo><mo>{</mo><mn>1</mn><mo>}</mo></math></span>.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"126 ","pages":"Article 102347"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving second order homogeneous differential equations in terms of Heun's general function\",\"authors\":\"Shayea Aldossari\",\"doi\":\"10.1016/j.jsc.2024.102347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present an algorithm that checks if a second-order differential operator <span><math><mi>L</mi><mo>∈</mo><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>[</mo><mo>∂</mo><mo>]</mo></math></span> can be reduced to the general Heun's differential operator. The algorithm detects the parameters of the transformations in <span><math><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>[</mo><mo>∂</mo><mo>]</mo></math></span> that transfer the general Heun's differential operator to the operator <em>L</em> whose solutions are of the form<span><span><span>(1)</span><span><math><mrow><mi>exp</mi></mrow><mo>(</mo><mo>∫</mo><mi>r</mi><mspace></mspace><mi>d</mi><mi>x</mi><mo>)</mo><mo>⋅</mo><mrow><mi>HeunG</mi></mrow><mo>(</mo><mi>a</mi><mo>,</mo><mspace></mspace><mi>q</mi><mo>;</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>,</mo><mi>δ</mi><mo>;</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mo>{</mo><mi>α</mi><mo>,</mo><mspace></mspace><mi>β</mi><mo>,</mo><mspace></mspace><mi>δ</mi><mo>,</mo><mspace></mspace><mi>γ</mi><mo>}</mo><mo>∈</mo><mi>Q</mi><mo>∖</mo><mi>Z</mi></math></span>, the functions <span><math><mi>r</mi><mo>,</mo><mspace></mspace><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>∈</mo><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span>, and <span><math><mi>C</mi><mo>(</mo><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></math></span> is a subfield of <span><math><mi>C</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> of index 2 or 3 or <span><math><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><mfrac><mrow><mi>a</mi><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>b</mi></mrow><mrow><mi>c</mi><mspace></mspace><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>+</mo><mi>d</mi></mrow></mfrac></math></span> for some <em>n</em> in <span><math><mi>N</mi><mo>∖</mo><mo>{</mo><mn>1</mn><mo>}</mo></math></span>.</p></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"126 \",\"pages\":\"Article 102347\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124000518\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124000518","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种算法,用于检验二阶微分算子 L∈C(x)[∂] 是否可以还原为一般亨氏微分算子。该算法检测 C(x)[∂] 中将一般亨氏微分算子转移到算子 L 的变换参数,算子 L 的解形式为(1)exp(∫rdx)⋅HeunG(a,q;α,β,γ,δ;f(x)),其中 {α,β,δ,γ}∈Q∖Z,函数 r,f(x)∈C(x),C(f(x)) 是索引为 2 或 3 或 f(x)=axn+bcxn+d 的 C(x) 子域,对于 N∖{1} 中的某个 n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving second order homogeneous differential equations in terms of Heun's general function

In this paper, we present an algorithm that checks if a second-order differential operator LC(x)[] can be reduced to the general Heun's differential operator. The algorithm detects the parameters of the transformations in C(x)[] that transfer the general Heun's differential operator to the operator L whose solutions are of the form(1)exp(rdx)HeunG(a,q;α,β,γ,δ;f(x)), where {α,β,δ,γ}QZ, the functions r,f(x)C(x), and C(f(x)) is a subfield of C(x) of index 2 or 3 or f(x)=axn+bcxn+d for some n in N{1}.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信