Khayyam Khan , Muhammad Zahid , Niaz Ali , Sobia Attaullah , Mujeeb Ullah , Khalid Khan , Ijaz Muhammad , Ali Abusharha , Michael Aschner , Haroon Khan
{"title":"巴基斯坦开伯尔巴图克瓦省帕克顿人自身免疫性甲状腺疾病中的 STAT3 单核苷酸变异","authors":"Khayyam Khan , Muhammad Zahid , Niaz Ali , Sobia Attaullah , Mujeeb Ullah , Khalid Khan , Ijaz Muhammad , Ali Abusharha , Michael Aschner , Haroon Khan","doi":"10.1016/j.genrep.2024.101950","DOIUrl":null,"url":null,"abstract":"<div><p>The current study was conducted to assess the relationship between the STAT3 gene variants rs744166 and rs2293152 and autoimmune thyroid disorder in the Pakhtun population of the province, of Khyber Pakhtunkhwa, Pakistan. Blood was collected from 100 healthy individuals and 400 thyroid-disordered patients. Of these, one hundred were diagnosed with Hashimoto's thyroiditis (HT), while 32 were confirmed as Grave's disease (GD) patients. T3, T4, and TSH serum levels were checked to diagnose thyroid disorders. The blood was analyzed for anti-thyroid peroxidase antibodies (Anti-TPOAb) (AESKULISA- ATPO - elisa kit), (Germany), and thyroid stimulating hormone receptor antibodies (TSHRAb), TSHR Ab elisa kit (Diametra Italy), respectively. PCR was used to amplify the targeted STAT3 gene polymorphisms from rs744166 (301 bp) and rs2293152 (365 bp) sequences and then digested by specific restriction endonucleases (<em>Alu</em>I) and <em>Aci</em>I respectively. The disease displayed a female predominance. The genotype TC and CC of rs744166 showed a significant relationship with Grave's disease (<em>p</em> = 0.002, OR = 0.28, 95 % CI = 0.11–0.77) in patients. The C allele contributed significantly to the disease in GD patients. The SNP rs2293152 significantly differed between GD patients and control (<em>p</em> = 0.032, OR = 0.29, 95 % CI = 0.09–0.86). Similarly, the G and C alleles showed a significant (<em>p</em> = 0.02) difference between GD patients and the control. No significant association was found for both SNPs in Hashimoto's thyroiditis disease. It is concluded that the STAT3 gene (rs744166 and rs2293152) was found to have a potential role in autoimmunity in GD patients. Still, it needs further studies with larger sample sizes in the Pakhtun population to understand this relationship.</p></div>","PeriodicalId":12673,"journal":{"name":"Gene Reports","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STAT3 single-nucleotide variants in autoimmune thyroid disease in the Pakhtun population of Khyber Pakhtunkhwa, Pakistan\",\"authors\":\"Khayyam Khan , Muhammad Zahid , Niaz Ali , Sobia Attaullah , Mujeeb Ullah , Khalid Khan , Ijaz Muhammad , Ali Abusharha , Michael Aschner , Haroon Khan\",\"doi\":\"10.1016/j.genrep.2024.101950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The current study was conducted to assess the relationship between the STAT3 gene variants rs744166 and rs2293152 and autoimmune thyroid disorder in the Pakhtun population of the province, of Khyber Pakhtunkhwa, Pakistan. Blood was collected from 100 healthy individuals and 400 thyroid-disordered patients. Of these, one hundred were diagnosed with Hashimoto's thyroiditis (HT), while 32 were confirmed as Grave's disease (GD) patients. T3, T4, and TSH serum levels were checked to diagnose thyroid disorders. The blood was analyzed for anti-thyroid peroxidase antibodies (Anti-TPOAb) (AESKULISA- ATPO - elisa kit), (Germany), and thyroid stimulating hormone receptor antibodies (TSHRAb), TSHR Ab elisa kit (Diametra Italy), respectively. PCR was used to amplify the targeted STAT3 gene polymorphisms from rs744166 (301 bp) and rs2293152 (365 bp) sequences and then digested by specific restriction endonucleases (<em>Alu</em>I) and <em>Aci</em>I respectively. The disease displayed a female predominance. The genotype TC and CC of rs744166 showed a significant relationship with Grave's disease (<em>p</em> = 0.002, OR = 0.28, 95 % CI = 0.11–0.77) in patients. The C allele contributed significantly to the disease in GD patients. The SNP rs2293152 significantly differed between GD patients and control (<em>p</em> = 0.032, OR = 0.29, 95 % CI = 0.09–0.86). Similarly, the G and C alleles showed a significant (<em>p</em> = 0.02) difference between GD patients and the control. No significant association was found for both SNPs in Hashimoto's thyroiditis disease. It is concluded that the STAT3 gene (rs744166 and rs2293152) was found to have a potential role in autoimmunity in GD patients. Still, it needs further studies with larger sample sizes in the Pakhtun population to understand this relationship.</p></div>\",\"PeriodicalId\":12673,\"journal\":{\"name\":\"Gene Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gene Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452014424000736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452014424000736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
STAT3 single-nucleotide variants in autoimmune thyroid disease in the Pakhtun population of Khyber Pakhtunkhwa, Pakistan
The current study was conducted to assess the relationship between the STAT3 gene variants rs744166 and rs2293152 and autoimmune thyroid disorder in the Pakhtun population of the province, of Khyber Pakhtunkhwa, Pakistan. Blood was collected from 100 healthy individuals and 400 thyroid-disordered patients. Of these, one hundred were diagnosed with Hashimoto's thyroiditis (HT), while 32 were confirmed as Grave's disease (GD) patients. T3, T4, and TSH serum levels were checked to diagnose thyroid disorders. The blood was analyzed for anti-thyroid peroxidase antibodies (Anti-TPOAb) (AESKULISA- ATPO - elisa kit), (Germany), and thyroid stimulating hormone receptor antibodies (TSHRAb), TSHR Ab elisa kit (Diametra Italy), respectively. PCR was used to amplify the targeted STAT3 gene polymorphisms from rs744166 (301 bp) and rs2293152 (365 bp) sequences and then digested by specific restriction endonucleases (AluI) and AciI respectively. The disease displayed a female predominance. The genotype TC and CC of rs744166 showed a significant relationship with Grave's disease (p = 0.002, OR = 0.28, 95 % CI = 0.11–0.77) in patients. The C allele contributed significantly to the disease in GD patients. The SNP rs2293152 significantly differed between GD patients and control (p = 0.032, OR = 0.29, 95 % CI = 0.09–0.86). Similarly, the G and C alleles showed a significant (p = 0.02) difference between GD patients and the control. No significant association was found for both SNPs in Hashimoto's thyroiditis disease. It is concluded that the STAT3 gene (rs744166 and rs2293152) was found to have a potential role in autoimmunity in GD patients. Still, it needs further studies with larger sample sizes in the Pakhtun population to understand this relationship.
Gene ReportsBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.30
自引率
7.70%
发文量
246
审稿时长
49 days
期刊介绍:
Gene Reports publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses. Gene Reports strives to be a very diverse journal and topics in all fields will be considered for publication. Although not limited to the following, some general topics include: DNA Organization, Replication & Evolution -Focus on genomic DNA (chromosomal organization, comparative genomics, DNA replication, DNA repair, mobile DNA, mitochondrial DNA, chloroplast DNA). Expression & Function - Focus on functional RNAs (microRNAs, tRNAs, rRNAs, mRNA splicing, alternative polyadenylation) Regulation - Focus on processes that mediate gene-read out (epigenetics, chromatin, histone code, transcription, translation, protein degradation). Cell Signaling - Focus on mechanisms that control information flow into the nucleus to control gene expression (kinase and phosphatase pathways controlled by extra-cellular ligands, Wnt, Notch, TGFbeta/BMPs, FGFs, IGFs etc.) Profiling of gene expression and genetic variation - Focus on high throughput approaches (e.g., DeepSeq, ChIP-Seq, Affymetrix microarrays, proteomics) that define gene regulatory circuitry, molecular pathways and protein/protein networks. Genetics - Focus on development in model organisms (e.g., mouse, frog, fruit fly, worm), human genetic variation, population genetics, as well as agricultural and veterinary genetics. Molecular Pathology & Regenerative Medicine - Focus on the deregulation of molecular processes in human diseases and mechanisms supporting regeneration of tissues through pluripotent or multipotent stem cells.