应用波方程的平面洛伦兹不变速度

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
James M. Hill
{"title":"应用波方程的平面洛伦兹不变速度","authors":"James M. Hill","doi":"10.1016/j.wavemoti.2024.103368","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we determine the functional form of those planar velocity fields for which the associated system of two ordinary differential equations are automatically invariant under a Lorentz transformation. For planar motion we determine first order partial differential equations for the velocity components <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> in the <span><math><mrow><mi>x</mi><mo>−</mo></mrow></math></span> and <span><math><mrow><mi>y</mi><mo>−</mo></mrow></math></span>directions respectively and their general solutions in terms of two arbitrary functions. These partial differential equations and the associated partial differential relations connecting energy and momentum are fully compatible with the Lorentz invariant energy–momentum relations and appear not to have been given previously in the literature. For a particular special relativistic model, one example is given involving similarity solutions of the wave equation. An interesting special case gives rise to a family of particle paths which are characterized by a single arbitrary function, and for which the magnitude of their velocities is the speed of light. This is indicative of the abundant possibilities existing in the “fast-lane”.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"130 ","pages":"Article 103368"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165212524000982/pdfft?md5=b98b0a1fa97bfb3c523f1508e6319cb8&pid=1-s2.0-S0165212524000982-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Planar Lorentz invariant velocities with a wave equation application\",\"authors\":\"James M. Hill\",\"doi\":\"10.1016/j.wavemoti.2024.103368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we determine the functional form of those planar velocity fields for which the associated system of two ordinary differential equations are automatically invariant under a Lorentz transformation. For planar motion we determine first order partial differential equations for the velocity components <span><math><mrow><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> in the <span><math><mrow><mi>x</mi><mo>−</mo></mrow></math></span> and <span><math><mrow><mi>y</mi><mo>−</mo></mrow></math></span>directions respectively and their general solutions in terms of two arbitrary functions. These partial differential equations and the associated partial differential relations connecting energy and momentum are fully compatible with the Lorentz invariant energy–momentum relations and appear not to have been given previously in the literature. For a particular special relativistic model, one example is given involving similarity solutions of the wave equation. An interesting special case gives rise to a family of particle paths which are characterized by a single arbitrary function, and for which the magnitude of their velocities is the speed of light. This is indicative of the abundant possibilities existing in the “fast-lane”.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"130 \",\"pages\":\"Article 103368\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0165212524000982/pdfft?md5=b98b0a1fa97bfb3c523f1508e6319cb8&pid=1-s2.0-S0165212524000982-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524000982\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524000982","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们确定了与之相关的两个常微分方程系在洛伦兹变换下自动不变的平面速度场的函数形式。对于平面运动,我们分别确定了 x 方向和 y 方向速度分量 u(x,y,t) 和 w(x,y,t) 的一阶偏微分方程,以及它们在两个任意函数方面的一般解。这些偏微分方程以及连接能量和动量的相关偏微分关系与洛伦兹不变的能量-动量关系完全吻合,似乎是以前文献中没有给出过的。对于一个特殊的相对论模型,给出了一个涉及波方程相似解的例子。一个有趣的特例是,粒子路径的特征是一个单一的任意函数,其速度的大小就是光速。这表明 "快车道 "存在着丰富的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planar Lorentz invariant velocities with a wave equation application

In this paper we determine the functional form of those planar velocity fields for which the associated system of two ordinary differential equations are automatically invariant under a Lorentz transformation. For planar motion we determine first order partial differential equations for the velocity components u(x,y,t) and w(x,y,t) in the x and ydirections respectively and their general solutions in terms of two arbitrary functions. These partial differential equations and the associated partial differential relations connecting energy and momentum are fully compatible with the Lorentz invariant energy–momentum relations and appear not to have been given previously in the literature. For a particular special relativistic model, one example is given involving similarity solutions of the wave equation. An interesting special case gives rise to a family of particle paths which are characterized by a single arbitrary function, and for which the magnitude of their velocities is the speed of light. This is indicative of the abundant possibilities existing in the “fast-lane”.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信