用 11.7 特斯拉弥散磁共振成像和痕量成像技术探测人脑器质性微观结构。

IF 4 Q2 NEUROSCIENCES
{"title":"用 11.7 特斯拉弥散磁共振成像和痕量成像技术探测人脑器质性微观结构。","authors":"","doi":"10.1016/j.bpsgos.2024.100344","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Human brain organoids are 3-dimensional cellular models that mimic architectural features of a developing brain. Generated from human induced pluripotent stem cells, these organoids offer an unparalleled physiologically relevant in vitro system for disease modeling and drug screening. In the current study, we sought to establish a foundation for a magnetic resonance imaging (MRI)–based, label-free imaging system that offers high-resolution capabilities for deep tissue imaging of whole organoids.</p></div><div><h3>Methods</h3><p>An 11.7T Bruker/89 mm microimaging system was used to collect high-resolution multishell 3-dimensional diffusion images of 2 induced pluripotent stem cell–derived human hippocampal brain organoids. The MRI features identified in the study were interpreted on the basis of similarities with immunofluorescence microscopy.</p></div><div><h3>Results</h3><p>MRI microscopy at ≤40 μm isotropic resolution provided a 3-dimensional view of organoid microstructure. T2-weighted contrast showed a rosette-like internal structure and a protruding spherical structure that correlated with immunofluorescence staining for the choroid plexus. Diffusion tractography methods can be used to model tissue microstructural features and possibly map neuronal organization. This approach complements traditional immunohistochemistry imaging methods without the need for tissue clearing.</p></div><div><h3>Conclusions</h3><p>This proof-of-concept study shows, for the first time, the application of high-resolution diffusion MRI microscopy to image 2-mm diameter spherical human brain organoids. Application of ultrahigh-field MRI and diffusion tractography is a powerful modality for whole organoid imaging and has the potential to make a significant impact for probing microstructural changes in brain organoids used to model psychiatric disorders, neurodegenerative diseases, and viral infections of the human brain, as well as for assessing neurotoxicity in drug screening.</p></div>","PeriodicalId":72373,"journal":{"name":"Biological psychiatry global open science","volume":"4 5","pages":"Article 100344"},"PeriodicalIF":4.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667174324000570/pdfft?md5=1c228c71c00dd68d6142cd5f57c044fb&pid=1-s2.0-S2667174324000570-main.pdf","citationCount":"0","resultStr":"{\"title\":\"11.7T Diffusion Magnetic Resonance Imaging and Tractography to Probe Human Brain Organoid Microstructure\",\"authors\":\"\",\"doi\":\"10.1016/j.bpsgos.2024.100344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Human brain organoids are 3-dimensional cellular models that mimic architectural features of a developing brain. Generated from human induced pluripotent stem cells, these organoids offer an unparalleled physiologically relevant in vitro system for disease modeling and drug screening. In the current study, we sought to establish a foundation for a magnetic resonance imaging (MRI)–based, label-free imaging system that offers high-resolution capabilities for deep tissue imaging of whole organoids.</p></div><div><h3>Methods</h3><p>An 11.7T Bruker/89 mm microimaging system was used to collect high-resolution multishell 3-dimensional diffusion images of 2 induced pluripotent stem cell–derived human hippocampal brain organoids. The MRI features identified in the study were interpreted on the basis of similarities with immunofluorescence microscopy.</p></div><div><h3>Results</h3><p>MRI microscopy at ≤40 μm isotropic resolution provided a 3-dimensional view of organoid microstructure. T2-weighted contrast showed a rosette-like internal structure and a protruding spherical structure that correlated with immunofluorescence staining for the choroid plexus. Diffusion tractography methods can be used to model tissue microstructural features and possibly map neuronal organization. This approach complements traditional immunohistochemistry imaging methods without the need for tissue clearing.</p></div><div><h3>Conclusions</h3><p>This proof-of-concept study shows, for the first time, the application of high-resolution diffusion MRI microscopy to image 2-mm diameter spherical human brain organoids. Application of ultrahigh-field MRI and diffusion tractography is a powerful modality for whole organoid imaging and has the potential to make a significant impact for probing microstructural changes in brain organoids used to model psychiatric disorders, neurodegenerative diseases, and viral infections of the human brain, as well as for assessing neurotoxicity in drug screening.</p></div>\",\"PeriodicalId\":72373,\"journal\":{\"name\":\"Biological psychiatry global open science\",\"volume\":\"4 5\",\"pages\":\"Article 100344\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667174324000570/pdfft?md5=1c228c71c00dd68d6142cd5f57c044fb&pid=1-s2.0-S2667174324000570-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological psychiatry global open science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667174324000570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological psychiatry global open science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667174324000570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景人脑器官组织是模拟发育中大脑结构特征的三维细胞模型。这些器官组织由人类诱导多能干细胞生成,为疾病建模和药物筛选提供了无与伦比的生理相关体外系统。在目前的研究中,我们试图为基于磁共振成像(MRI)的无标记成像系统奠定基础,该系统可为整个有机体的深层组织成像提供高分辨率功能。方法使用11.7T布鲁克/89毫米显微成像系统收集2个诱导多能干细胞衍生的人类海马脑有机体的高分辨率多壳三维扩散图像。结果MRI显微镜分辨率≤40 μm,提供了类器官微观结构的三维视图。T2加权对比显示了莲座状内部结构和突出的球形结构,这与脉络丛的免疫荧光染色相关。弥散牵引成像方法可用于模拟组织微观结构特征,并可能绘制神经元组织图。该方法是对传统免疫组化成像方法的补充,无需进行组织清理。结论这项概念验证研究首次显示了高分辨率弥散核磁共振成像显微镜在 2 毫米直径球形人脑器官成像中的应用。应用超高场磁共振成像和弥散牵引成像技术是对整个类器官成像的一种强大模式,有可能对用于模拟精神疾病、神经退行性疾病和人脑病毒感染的脑类器官的微观结构变化以及在药物筛选中评估神经毒性产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
11.7T Diffusion Magnetic Resonance Imaging and Tractography to Probe Human Brain Organoid Microstructure

Background

Human brain organoids are 3-dimensional cellular models that mimic architectural features of a developing brain. Generated from human induced pluripotent stem cells, these organoids offer an unparalleled physiologically relevant in vitro system for disease modeling and drug screening. In the current study, we sought to establish a foundation for a magnetic resonance imaging (MRI)–based, label-free imaging system that offers high-resolution capabilities for deep tissue imaging of whole organoids.

Methods

An 11.7T Bruker/89 mm microimaging system was used to collect high-resolution multishell 3-dimensional diffusion images of 2 induced pluripotent stem cell–derived human hippocampal brain organoids. The MRI features identified in the study were interpreted on the basis of similarities with immunofluorescence microscopy.

Results

MRI microscopy at ≤40 μm isotropic resolution provided a 3-dimensional view of organoid microstructure. T2-weighted contrast showed a rosette-like internal structure and a protruding spherical structure that correlated with immunofluorescence staining for the choroid plexus. Diffusion tractography methods can be used to model tissue microstructural features and possibly map neuronal organization. This approach complements traditional immunohistochemistry imaging methods without the need for tissue clearing.

Conclusions

This proof-of-concept study shows, for the first time, the application of high-resolution diffusion MRI microscopy to image 2-mm diameter spherical human brain organoids. Application of ultrahigh-field MRI and diffusion tractography is a powerful modality for whole organoid imaging and has the potential to make a significant impact for probing microstructural changes in brain organoids used to model psychiatric disorders, neurodegenerative diseases, and viral infections of the human brain, as well as for assessing neurotoxicity in drug screening.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological psychiatry global open science
Biological psychiatry global open science Psychiatry and Mental Health
CiteScore
4.00
自引率
0.00%
发文量
0
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信