{"title":"通过合成 Pinus Brutia 单宁聚合物从电子废物中回收黄金","authors":"Tayfun Yalın , Engin Deniz Parlar , Mustafa Can","doi":"10.1016/j.reactfunctpolym.2024.105973","DOIUrl":null,"url":null,"abstract":"<div><p>Electrical and electronic waste (e-waste) is one of the most common waste problems today and contains many recyclable materials such as gold and palladium. In this study, an adsorption material was prepared by reacting tannin from <em>Pinus Brutia</em> bark with formaldehyde to recover gold from e-waste. The produced <em>Pinus Brutia</em> tannin (PBTR) polymer was characterized using TGA, BET, and FTIR. The adsorption efficiency was investigated using solutions containing gold ions with different pH values, adsorbent masses, initial concentrations, times, and temperatures. The results of these experiments were used to perform adsorption isotherm, kinetics, and thermodynamics calculations. The pseudo-second-order kinetic equation and the Langmuir isothermal equation were found to fit the experimental data best. The Au(III) ion saturation capacity of the PBTR particle monolayer was calculated to be 1771.73 mg/g at 328 K using the Langmuir isotherm. XRD and XPS analyses showed that most of the Au(III) ions were reduced to metallic gold after adsorption on the surface of the PBTR particles. Observations show that the adsorbent effectively removes Au(III) from the leaching solution generated by e-waste.</p></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recovery of gold from electronic waste by the synthesis of Pinus Brutia tannin polymer\",\"authors\":\"Tayfun Yalın , Engin Deniz Parlar , Mustafa Can\",\"doi\":\"10.1016/j.reactfunctpolym.2024.105973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrical and electronic waste (e-waste) is one of the most common waste problems today and contains many recyclable materials such as gold and palladium. In this study, an adsorption material was prepared by reacting tannin from <em>Pinus Brutia</em> bark with formaldehyde to recover gold from e-waste. The produced <em>Pinus Brutia</em> tannin (PBTR) polymer was characterized using TGA, BET, and FTIR. The adsorption efficiency was investigated using solutions containing gold ions with different pH values, adsorbent masses, initial concentrations, times, and temperatures. The results of these experiments were used to perform adsorption isotherm, kinetics, and thermodynamics calculations. The pseudo-second-order kinetic equation and the Langmuir isothermal equation were found to fit the experimental data best. The Au(III) ion saturation capacity of the PBTR particle monolayer was calculated to be 1771.73 mg/g at 328 K using the Langmuir isotherm. XRD and XPS analyses showed that most of the Au(III) ions were reduced to metallic gold after adsorption on the surface of the PBTR particles. Observations show that the adsorbent effectively removes Au(III) from the leaching solution generated by e-waste.</p></div>\",\"PeriodicalId\":20916,\"journal\":{\"name\":\"Reactive & Functional Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reactive & Functional Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381514824001482\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381514824001482","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Recovery of gold from electronic waste by the synthesis of Pinus Brutia tannin polymer
Electrical and electronic waste (e-waste) is one of the most common waste problems today and contains many recyclable materials such as gold and palladium. In this study, an adsorption material was prepared by reacting tannin from Pinus Brutia bark with formaldehyde to recover gold from e-waste. The produced Pinus Brutia tannin (PBTR) polymer was characterized using TGA, BET, and FTIR. The adsorption efficiency was investigated using solutions containing gold ions with different pH values, adsorbent masses, initial concentrations, times, and temperatures. The results of these experiments were used to perform adsorption isotherm, kinetics, and thermodynamics calculations. The pseudo-second-order kinetic equation and the Langmuir isothermal equation were found to fit the experimental data best. The Au(III) ion saturation capacity of the PBTR particle monolayer was calculated to be 1771.73 mg/g at 328 K using the Langmuir isotherm. XRD and XPS analyses showed that most of the Au(III) ions were reduced to metallic gold after adsorption on the surface of the PBTR particles. Observations show that the adsorbent effectively removes Au(III) from the leaching solution generated by e-waste.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.