溶解对气相 O--(H2O)和 OH-(H2O)簇离子与分子氧和二氧化碳化学性质的影响

IF 1.6 3区 化学 Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
Jozef Lengyel , Milan Ončák , Martin K. Beyer
{"title":"溶解对气相 O--(H2O)和 OH-(H2O)簇离子与分子氧和二氧化碳化学性质的影响","authors":"Jozef Lengyel ,&nbsp;Milan Ončák ,&nbsp;Martin K. Beyer","doi":"10.1016/j.ijms.2024.117279","DOIUrl":null,"url":null,"abstract":"<div><p>Ion-molecule reactions in the gas phase are significantly influenced by hydration. Here we investigate the impact of hydration on the reactivity of two atmospherically relevant anions, O<sup>•−</sup> and OH<sup>−</sup>, with oxygen and carbon dioxide. A mixture of hydrated anions O<sup>•−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub> and OH<sup>−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub>, <em>n</em> &lt; 60, is prepared in a laser vaporization source and reacted in a temperature-controlled ICR cell with O<sub>2</sub> and CO<sub>2</sub>. While OH<sup>−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub> does not react with O<sub>2</sub>, formation of hydrated ozonide O<sub>3</sub><sup>•−</sup>(H<sub>2</sub>O)<sub><em>m</em></sub> is observed in the reaction of O<sup>•−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub> with O<sub>2</sub> for all studied cluster sizes. The reaction slows down with increasing cluster size, which compromises nanocalorimetry. Quantum chemical calculations show that ozonide formation is exothermic with Δ<em>E</em><sub>0</sub> = −52 kJ mol<sup>−1</sup> for <em>n</em> ≈ 7–11, while O<sub>2</sub> is very weakly bound to OH<sup>−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub>. Observation of such a non-covalent (O<sub>2</sub>)OH<sup>−</sup>(H<sub>2</sub>O)<sub><em>m</em></sub> complex in a mass spectrometer might be possible at significantly lower temperatures than accessible in our experiment. For CO<sub>2</sub>, we observe reactions only in a narrow size regime, up to <em>n</em> ≈ 8 for O<sup>•−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub> and <em>n</em> ≈ 6 for OH<sup>−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub>, to form CO<sub>3</sub><sup>•−</sup>(H<sub>2</sub>O)<sub><em>m</em></sub> and HCO<sub>3</sub><sup>−</sup>(H<sub>2</sub>O)<sub><em>m</em></sub>, respectively. Calculations render both reactions substantially exothermic also for larger clusters, ruling out thermochemistry as an explanation for the size-dependent reactivity.</p></div>","PeriodicalId":338,"journal":{"name":"International Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1387380624000903/pdfft?md5=ad6fbaab25301d1de8f442a04ae36a46&pid=1-s2.0-S1387380624000903-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Solvation effects on the chemistry of the gas-phase O•−(H2O)n and OH−(H2O)n cluster ions with molecular oxygen and carbon dioxide\",\"authors\":\"Jozef Lengyel ,&nbsp;Milan Ončák ,&nbsp;Martin K. Beyer\",\"doi\":\"10.1016/j.ijms.2024.117279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ion-molecule reactions in the gas phase are significantly influenced by hydration. Here we investigate the impact of hydration on the reactivity of two atmospherically relevant anions, O<sup>•−</sup> and OH<sup>−</sup>, with oxygen and carbon dioxide. A mixture of hydrated anions O<sup>•−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub> and OH<sup>−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub>, <em>n</em> &lt; 60, is prepared in a laser vaporization source and reacted in a temperature-controlled ICR cell with O<sub>2</sub> and CO<sub>2</sub>. While OH<sup>−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub> does not react with O<sub>2</sub>, formation of hydrated ozonide O<sub>3</sub><sup>•−</sup>(H<sub>2</sub>O)<sub><em>m</em></sub> is observed in the reaction of O<sup>•−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub> with O<sub>2</sub> for all studied cluster sizes. The reaction slows down with increasing cluster size, which compromises nanocalorimetry. Quantum chemical calculations show that ozonide formation is exothermic with Δ<em>E</em><sub>0</sub> = −52 kJ mol<sup>−1</sup> for <em>n</em> ≈ 7–11, while O<sub>2</sub> is very weakly bound to OH<sup>−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub>. Observation of such a non-covalent (O<sub>2</sub>)OH<sup>−</sup>(H<sub>2</sub>O)<sub><em>m</em></sub> complex in a mass spectrometer might be possible at significantly lower temperatures than accessible in our experiment. For CO<sub>2</sub>, we observe reactions only in a narrow size regime, up to <em>n</em> ≈ 8 for O<sup>•−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub> and <em>n</em> ≈ 6 for OH<sup>−</sup>(H<sub>2</sub>O)<sub><em>n</em></sub>, to form CO<sub>3</sub><sup>•−</sup>(H<sub>2</sub>O)<sub><em>m</em></sub> and HCO<sub>3</sub><sup>−</sup>(H<sub>2</sub>O)<sub><em>m</em></sub>, respectively. Calculations render both reactions substantially exothermic also for larger clusters, ruling out thermochemistry as an explanation for the size-dependent reactivity.</p></div>\",\"PeriodicalId\":338,\"journal\":{\"name\":\"International Journal of Mass Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1387380624000903/pdfft?md5=ad6fbaab25301d1de8f442a04ae36a46&pid=1-s2.0-S1387380624000903-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387380624000903\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387380624000903","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

气相中的离子分子反应受水合作用的影响很大。在这里,我们研究了水合作用对两种与大气相关的阴离子 O-- 和 OH- 与氧气和二氧化碳反应性的影响。水合阴离子 O--(H2O)n和OH-(H2O)n(n < 60)的混合物在激光气化源中制备,并在温控 ICR 池中与氧气和二氧化碳反应。虽然 OH-(H2O)n 不与 O2 反应,但在 O--(H2O)n与 O2 的反应中,观察到在所有研究的簇大小中都形成了水合臭氧 O3--(H2O)m。反应速度随着团簇尺寸的增大而减慢,从而影响了纳米测 量。量子化学计算表明,在 n ≈ 7-11 时,臭氧的形成是放热的,ΔE0 = -52 kJ mol-1,而 O2 与 OH-(H2O)n 的结合非常弱。在质谱仪中观察这种非共价的 (O2)OH-(H2O)m 复合物,可能需要比我们的实验更低的温度。对于 CO2,我们只在一个较窄的尺寸范围内观察到反应,O--(H2O)n 和 OH--(H2O)n 分别形成 CO3--(H2O)m 和 HCO3--(H2O)m,O--(H2O)n 和 OH-(H2O)n 的最大尺寸分别为 n ≈ 8 和 n ≈ 6。计算结果表明,对于较大的团块,这两种反应也会产生大量的放热反应,从而排除了用热化学来解释反应大小依赖性的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Solvation effects on the chemistry of the gas-phase O•−(H2O)n and OH−(H2O)n cluster ions with molecular oxygen and carbon dioxide

Solvation effects on the chemistry of the gas-phase O•−(H2O)n and OH−(H2O)n cluster ions with molecular oxygen and carbon dioxide

Ion-molecule reactions in the gas phase are significantly influenced by hydration. Here we investigate the impact of hydration on the reactivity of two atmospherically relevant anions, O•− and OH, with oxygen and carbon dioxide. A mixture of hydrated anions O•−(H2O)n and OH(H2O)n, n < 60, is prepared in a laser vaporization source and reacted in a temperature-controlled ICR cell with O2 and CO2. While OH(H2O)n does not react with O2, formation of hydrated ozonide O3•−(H2O)m is observed in the reaction of O•−(H2O)n with O2 for all studied cluster sizes. The reaction slows down with increasing cluster size, which compromises nanocalorimetry. Quantum chemical calculations show that ozonide formation is exothermic with ΔE0 = −52 kJ mol−1 for n ≈ 7–11, while O2 is very weakly bound to OH(H2O)n. Observation of such a non-covalent (O2)OH(H2O)m complex in a mass spectrometer might be possible at significantly lower temperatures than accessible in our experiment. For CO2, we observe reactions only in a narrow size regime, up to n ≈ 8 for O•−(H2O)n and n ≈ 6 for OH(H2O)n, to form CO3•−(H2O)m and HCO3(H2O)m, respectively. Calculations render both reactions substantially exothermic also for larger clusters, ruling out thermochemistry as an explanation for the size-dependent reactivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.60%
发文量
145
审稿时长
71 days
期刊介绍: The journal invites papers that advance the field of mass spectrometry by exploring fundamental aspects of ion processes using both the experimental and theoretical approaches, developing new instrumentation and experimental strategies for chemical analysis using mass spectrometry, developing new computational strategies for data interpretation and integration, reporting new applications of mass spectrometry and hyphenated techniques in biology, chemistry, geology, and physics. Papers, in which standard mass spectrometry techniques are used for analysis will not be considered. IJMS publishes full-length articles, short communications, reviews, and feature articles including young scientist features.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信