耦合非线性薛定谔-KdV方程的物理不变式保留紧凑差分方案

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yuyu He , Hongtao Chen , Bolin Chen
{"title":"耦合非线性薛定谔-KdV方程的物理不变式保留紧凑差分方案","authors":"Yuyu He ,&nbsp;Hongtao Chen ,&nbsp;Bolin Chen","doi":"10.1016/j.apnum.2024.06.007","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop efficient compact difference schemes for the coupled nonlinear Schrödinger-KdV (CNLS-KdV) equations to conserve all the physical invariants, namely, the energy of oscillations, the number of plasmon, the number of particle and the momentum. By combining the exponential scalar auxiliary variable (E-SAV) approach, we reconstruct the original CNLS-KdV equations and adopt the compact difference method and Crank-Nicolson method to develop energy stable scheme. The E-SAV compact difference scheme preserves the total energy and the number of particle. We further introduce two Lagrange multipliers for the E-SAV reformulation system to develop compact difference scheme, which preserves exactly the number of plasmon and the momentum. At each time step for the second scheme, we only need to solve linear systems with constant coefficients and nonlinear quadratic algebraic equations which can be efficiently solved by Newton's iteration. Numerical experiments are given to show the effectiveness, accuracy and performance of the proposed schemes.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical invariants-preserving compact difference schemes for the coupled nonlinear Schrödinger-KdV equations\",\"authors\":\"Yuyu He ,&nbsp;Hongtao Chen ,&nbsp;Bolin Chen\",\"doi\":\"10.1016/j.apnum.2024.06.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we develop efficient compact difference schemes for the coupled nonlinear Schrödinger-KdV (CNLS-KdV) equations to conserve all the physical invariants, namely, the energy of oscillations, the number of plasmon, the number of particle and the momentum. By combining the exponential scalar auxiliary variable (E-SAV) approach, we reconstruct the original CNLS-KdV equations and adopt the compact difference method and Crank-Nicolson method to develop energy stable scheme. The E-SAV compact difference scheme preserves the total energy and the number of particle. We further introduce two Lagrange multipliers for the E-SAV reformulation system to develop compact difference scheme, which preserves exactly the number of plasmon and the momentum. At each time step for the second scheme, we only need to solve linear systems with constant coefficients and nonlinear quadratic algebraic equations which can be efficiently solved by Newton's iteration. Numerical experiments are given to show the effectiveness, accuracy and performance of the proposed schemes.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文为耦合非线性薛定谔-KdV(CNLS-KdV)方程开发了高效的紧凑差分方案,以保存所有物理不变式,即振荡能量、质子数、粒子数和动量。结合指数标量辅助变量(E-SAV)方法,我们重构了原始的 CNLS-KdV 方程,并采用紧凑差分法和 Crank-Nicolson 法建立了能量稳定方案。E-SAV 紧凑差分方案保留了总能量和粒子数。我们进一步为 E-SAV 重述系统引入了两个拉格朗日乘法器,建立了紧凑差分方案,该方案精确地保留了质点数量和动量。在第二种方案的每个时间步中,我们只需求解常数系数线性方程组和非线性二次代数方程组,这些方程组可通过牛顿迭代法高效求解。数值实验表明了所提方案的有效性、准确性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical invariants-preserving compact difference schemes for the coupled nonlinear Schrödinger-KdV equations

In this paper, we develop efficient compact difference schemes for the coupled nonlinear Schrödinger-KdV (CNLS-KdV) equations to conserve all the physical invariants, namely, the energy of oscillations, the number of plasmon, the number of particle and the momentum. By combining the exponential scalar auxiliary variable (E-SAV) approach, we reconstruct the original CNLS-KdV equations and adopt the compact difference method and Crank-Nicolson method to develop energy stable scheme. The E-SAV compact difference scheme preserves the total energy and the number of particle. We further introduce two Lagrange multipliers for the E-SAV reformulation system to develop compact difference scheme, which preserves exactly the number of plasmon and the momentum. At each time step for the second scheme, we only need to solve linear systems with constant coefficients and nonlinear quadratic algebraic equations which can be efficiently solved by Newton's iteration. Numerical experiments are given to show the effectiveness, accuracy and performance of the proposed schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信