{"title":"使用伪一维方法的多维冷冻时间{fr}Temps de congélation multidimensionnel en utilisant une méthode pseudo-unidimensionnelle","authors":"","doi":"10.1016/j.ijrefrig.2024.06.020","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a method to calculate the freezing time of multidimensional objects using a pseudo-one-dimensional method. For example, the temperature of a rectangle in <span><math><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi></mrow><mo>)</mo></mrow></math></span> can be simulated from the two-dimensional heat conduction equation to obtain a pseudo-one-dimensional temperature <span><math><mrow><mi>T</mi><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>t</mi></mrow><mo>)</mo></mrow></math></span>, using the space grid <span><math><mrow><mstyle><mi>Δ</mi></mstyle><mi>x</mi><mo>=</mo><msub><mi>L</mi><mi>x</mi></msub><mo>/</mo><mrow><mo>(</mo><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mspace></mspace></mrow><mo>)</mo></mrow></mrow></math></span> (where <span><math><mrow><mi>n</mi><mo>=</mo><mi>m</mi></mrow></math></span>) and <span><math><mrow><mstyle><mi>Δ</mi></mstyle><mi>y</mi><mo>=</mo><mstyle><mi>Δ</mi></mstyle><mi>x</mi><msub><mi>L</mi><mi>y</mi></msub><mo>/</mo><msub><mi>L</mi><mi>x</mi></msub></mrow></math></span> as references. This procedure can be used to calculate the freezing time <span><math><mrow><mo>(</mo><msub><mi>t</mi><mtext>calc</mtext></msub><mo>)</mo></mrow></math></span> at a selected point, such as the center of an object. A computer program with a runtime similar to that of a one-dimensional problem has been developed for the proposed model. The freezing times (<span><math><msub><mi>t</mi><mtext>calc</mtext></msub></math></span>) of 212 multidimensional objects (parallelepipeds, rectangles, and finite cylinders) were then compared with the experimental freezing times (<span><math><mrow><msub><mi>t</mi><mtext>exper</mtext></msub><mrow><mo>)</mo></mrow></mrow></math></span>. The calculations yielded the following parameters for all 212 objects: minimum error <span><math><mrow><msub><mi>E</mi><mtext>min</mtext></msub><mo>=</mo><mo>−</mo><mn>3.9</mn><mo>%</mo></mrow></math></span>, mean error <span><math><mrow><msub><mi>E</mi><mtext>mean</mtext></msub><mo>=</mo><mn>0.2</mn><mo>%</mo></mrow></math></span>, maximum error <span><math><mrow><msub><mi>E</mi><mtext>max</mtext></msub><mo>=</mo><mn>5.0</mn><mo>%</mo></mrow></math></span>, standard deviation <span><math><mrow><msub><mi>σ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>1.4</mn><mo>%</mo></mrow></math></span>, and mean absolute error <span><math><mrow><msub><mi>E</mi><mtext>abs</mtext></msub><mo>=</mo><mn>1.1</mn><mo>%</mo></mrow></math></span>. The freezing times (<span><math><msub><mi>t</mi><mtext>calc</mtext></msub></math></span>) of 100 multidimensional objects (parallelepipeds and rectangles) were then compared with the freezing times of computational experiments (computational simulation) obtained from the literature using the finite element method (<span><math><mrow><msub><mi>t</mi><mtext>comput</mtext></msub><mrow><mo>)</mo></mrow></mrow></math></span>. The calculations yielded the following parameters for all 100 objects: <span><math><mrow><msub><mi>E</mi><mtext>min</mtext></msub><mo>=</mo><mo>−</mo><mn>2.8</mn><mo>%</mo></mrow></math></span>, <span><math><mrow><msub><mi>E</mi><mtext>mean</mtext></msub><mo>=</mo><mn>0.1</mn><mo>%</mo></mrow></math></span>, <span><math><mrow><msub><mi>E</mi><mtext>max</mtext></msub><mo>=</mo><mn>3.7</mn><mo>%</mo></mrow></math></span>, <span><math><mrow><msub><mi>σ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>1.4</mn><mo>%</mo></mrow></math></span>, and <span><math><mrow><msub><mi>E</mi><mtext>abs</mtext></msub><mo>=</mo><mn>1.1</mn><mo>%</mo></mrow></math></span>.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidimensional freezing time using a pseudo-one-dimensional method\",\"authors\":\"\",\"doi\":\"10.1016/j.ijrefrig.2024.06.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a method to calculate the freezing time of multidimensional objects using a pseudo-one-dimensional method. For example, the temperature of a rectangle in <span><math><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi></mrow><mo>)</mo></mrow></math></span> can be simulated from the two-dimensional heat conduction equation to obtain a pseudo-one-dimensional temperature <span><math><mrow><mi>T</mi><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>t</mi></mrow><mo>)</mo></mrow></math></span>, using the space grid <span><math><mrow><mstyle><mi>Δ</mi></mstyle><mi>x</mi><mo>=</mo><msub><mi>L</mi><mi>x</mi></msub><mo>/</mo><mrow><mo>(</mo><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mspace></mspace></mrow><mo>)</mo></mrow></mrow></math></span> (where <span><math><mrow><mi>n</mi><mo>=</mo><mi>m</mi></mrow></math></span>) and <span><math><mrow><mstyle><mi>Δ</mi></mstyle><mi>y</mi><mo>=</mo><mstyle><mi>Δ</mi></mstyle><mi>x</mi><msub><mi>L</mi><mi>y</mi></msub><mo>/</mo><msub><mi>L</mi><mi>x</mi></msub></mrow></math></span> as references. This procedure can be used to calculate the freezing time <span><math><mrow><mo>(</mo><msub><mi>t</mi><mtext>calc</mtext></msub><mo>)</mo></mrow></math></span> at a selected point, such as the center of an object. A computer program with a runtime similar to that of a one-dimensional problem has been developed for the proposed model. The freezing times (<span><math><msub><mi>t</mi><mtext>calc</mtext></msub></math></span>) of 212 multidimensional objects (parallelepipeds, rectangles, and finite cylinders) were then compared with the experimental freezing times (<span><math><mrow><msub><mi>t</mi><mtext>exper</mtext></msub><mrow><mo>)</mo></mrow></mrow></math></span>. The calculations yielded the following parameters for all 212 objects: minimum error <span><math><mrow><msub><mi>E</mi><mtext>min</mtext></msub><mo>=</mo><mo>−</mo><mn>3.9</mn><mo>%</mo></mrow></math></span>, mean error <span><math><mrow><msub><mi>E</mi><mtext>mean</mtext></msub><mo>=</mo><mn>0.2</mn><mo>%</mo></mrow></math></span>, maximum error <span><math><mrow><msub><mi>E</mi><mtext>max</mtext></msub><mo>=</mo><mn>5.0</mn><mo>%</mo></mrow></math></span>, standard deviation <span><math><mrow><msub><mi>σ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>1.4</mn><mo>%</mo></mrow></math></span>, and mean absolute error <span><math><mrow><msub><mi>E</mi><mtext>abs</mtext></msub><mo>=</mo><mn>1.1</mn><mo>%</mo></mrow></math></span>. The freezing times (<span><math><msub><mi>t</mi><mtext>calc</mtext></msub></math></span>) of 100 multidimensional objects (parallelepipeds and rectangles) were then compared with the freezing times of computational experiments (computational simulation) obtained from the literature using the finite element method (<span><math><mrow><msub><mi>t</mi><mtext>comput</mtext></msub><mrow><mo>)</mo></mrow></mrow></math></span>. The calculations yielded the following parameters for all 100 objects: <span><math><mrow><msub><mi>E</mi><mtext>min</mtext></msub><mo>=</mo><mo>−</mo><mn>2.8</mn><mo>%</mo></mrow></math></span>, <span><math><mrow><msub><mi>E</mi><mtext>mean</mtext></msub><mo>=</mo><mn>0.1</mn><mo>%</mo></mrow></math></span>, <span><math><mrow><msub><mi>E</mi><mtext>max</mtext></msub><mo>=</mo><mn>3.7</mn><mo>%</mo></mrow></math></span>, <span><math><mrow><msub><mi>σ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>1.4</mn><mo>%</mo></mrow></math></span>, and <span><math><mrow><msub><mi>E</mi><mtext>abs</mtext></msub><mo>=</mo><mn>1.1</mn><mo>%</mo></mrow></math></span>.</p></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724002214\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002214","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Multidimensional freezing time using a pseudo-one-dimensional method
This study presents a method to calculate the freezing time of multidimensional objects using a pseudo-one-dimensional method. For example, the temperature of a rectangle in can be simulated from the two-dimensional heat conduction equation to obtain a pseudo-one-dimensional temperature , using the space grid (where ) and as references. This procedure can be used to calculate the freezing time at a selected point, such as the center of an object. A computer program with a runtime similar to that of a one-dimensional problem has been developed for the proposed model. The freezing times () of 212 multidimensional objects (parallelepipeds, rectangles, and finite cylinders) were then compared with the experimental freezing times (. The calculations yielded the following parameters for all 212 objects: minimum error , mean error , maximum error , standard deviation , and mean absolute error . The freezing times () of 100 multidimensional objects (parallelepipeds and rectangles) were then compared with the freezing times of computational experiments (computational simulation) obtained from the literature using the finite element method (. The calculations yielded the following parameters for all 100 objects: , , , , and .
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.