使用伪一维方法的多维冷冻时间{fr}Temps de congélation multidimensionnel en utilisant une méthode pseudo-unidimensionnelle

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
{"title":"使用伪一维方法的多维冷冻时间{fr}Temps de congélation multidimensionnel en utilisant une méthode pseudo-unidimensionnelle","authors":"","doi":"10.1016/j.ijrefrig.2024.06.020","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a method to calculate the freezing time of multidimensional objects using a pseudo-one-dimensional method. For example, the temperature of a rectangle in <span><math><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi></mrow><mo>)</mo></mrow></math></span> can be simulated from the two-dimensional heat conduction equation to obtain a pseudo-one-dimensional temperature <span><math><mrow><mi>T</mi><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>t</mi></mrow><mo>)</mo></mrow></math></span>, using the space grid <span><math><mrow><mstyle><mi>Δ</mi></mstyle><mi>x</mi><mo>=</mo><msub><mi>L</mi><mi>x</mi></msub><mo>/</mo><mrow><mo>(</mo><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mspace></mspace></mrow><mo>)</mo></mrow></mrow></math></span> (where <span><math><mrow><mi>n</mi><mo>=</mo><mi>m</mi></mrow></math></span>) and <span><math><mrow><mstyle><mi>Δ</mi></mstyle><mi>y</mi><mo>=</mo><mstyle><mi>Δ</mi></mstyle><mi>x</mi><msub><mi>L</mi><mi>y</mi></msub><mo>/</mo><msub><mi>L</mi><mi>x</mi></msub></mrow></math></span> as references. This procedure can be used to calculate the freezing time <span><math><mrow><mo>(</mo><msub><mi>t</mi><mtext>calc</mtext></msub><mo>)</mo></mrow></math></span> at a selected point, such as the center of an object. A computer program with a runtime similar to that of a one-dimensional problem has been developed for the proposed model. The freezing times (<span><math><msub><mi>t</mi><mtext>calc</mtext></msub></math></span>) of 212 multidimensional objects (parallelepipeds, rectangles, and finite cylinders) were then compared with the experimental freezing times (<span><math><mrow><msub><mi>t</mi><mtext>exper</mtext></msub><mrow><mo>)</mo></mrow></mrow></math></span>. The calculations yielded the following parameters for all 212 objects: minimum error <span><math><mrow><msub><mi>E</mi><mtext>min</mtext></msub><mo>=</mo><mo>−</mo><mn>3.9</mn><mo>%</mo></mrow></math></span>, mean error <span><math><mrow><msub><mi>E</mi><mtext>mean</mtext></msub><mo>=</mo><mn>0.2</mn><mo>%</mo></mrow></math></span>, maximum error <span><math><mrow><msub><mi>E</mi><mtext>max</mtext></msub><mo>=</mo><mn>5.0</mn><mo>%</mo></mrow></math></span>, standard deviation <span><math><mrow><msub><mi>σ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>1.4</mn><mo>%</mo></mrow></math></span>, and mean absolute error <span><math><mrow><msub><mi>E</mi><mtext>abs</mtext></msub><mo>=</mo><mn>1.1</mn><mo>%</mo></mrow></math></span>. The freezing times (<span><math><msub><mi>t</mi><mtext>calc</mtext></msub></math></span>) of 100 multidimensional objects (parallelepipeds and rectangles) were then compared with the freezing times of computational experiments (computational simulation) obtained from the literature using the finite element method (<span><math><mrow><msub><mi>t</mi><mtext>comput</mtext></msub><mrow><mo>)</mo></mrow></mrow></math></span>. The calculations yielded the following parameters for all 100 objects: <span><math><mrow><msub><mi>E</mi><mtext>min</mtext></msub><mo>=</mo><mo>−</mo><mn>2.8</mn><mo>%</mo></mrow></math></span>, <span><math><mrow><msub><mi>E</mi><mtext>mean</mtext></msub><mo>=</mo><mn>0.1</mn><mo>%</mo></mrow></math></span>, <span><math><mrow><msub><mi>E</mi><mtext>max</mtext></msub><mo>=</mo><mn>3.7</mn><mo>%</mo></mrow></math></span>, <span><math><mrow><msub><mi>σ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>1.4</mn><mo>%</mo></mrow></math></span>, and <span><math><mrow><msub><mi>E</mi><mtext>abs</mtext></msub><mo>=</mo><mn>1.1</mn><mo>%</mo></mrow></math></span>.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multidimensional freezing time using a pseudo-one-dimensional method\",\"authors\":\"\",\"doi\":\"10.1016/j.ijrefrig.2024.06.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a method to calculate the freezing time of multidimensional objects using a pseudo-one-dimensional method. For example, the temperature of a rectangle in <span><math><mrow><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>t</mi></mrow><mo>)</mo></mrow></math></span> can be simulated from the two-dimensional heat conduction equation to obtain a pseudo-one-dimensional temperature <span><math><mrow><mi>T</mi><mo>(</mo><mrow><mi>x</mi><mo>,</mo><mi>t</mi></mrow><mo>)</mo></mrow></math></span>, using the space grid <span><math><mrow><mstyle><mi>Δ</mi></mstyle><mi>x</mi><mo>=</mo><msub><mi>L</mi><mi>x</mi></msub><mo>/</mo><mrow><mo>(</mo><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mspace></mspace></mrow><mo>)</mo></mrow></mrow></math></span> (where <span><math><mrow><mi>n</mi><mo>=</mo><mi>m</mi></mrow></math></span>) and <span><math><mrow><mstyle><mi>Δ</mi></mstyle><mi>y</mi><mo>=</mo><mstyle><mi>Δ</mi></mstyle><mi>x</mi><msub><mi>L</mi><mi>y</mi></msub><mo>/</mo><msub><mi>L</mi><mi>x</mi></msub></mrow></math></span> as references. This procedure can be used to calculate the freezing time <span><math><mrow><mo>(</mo><msub><mi>t</mi><mtext>calc</mtext></msub><mo>)</mo></mrow></math></span> at a selected point, such as the center of an object. A computer program with a runtime similar to that of a one-dimensional problem has been developed for the proposed model. The freezing times (<span><math><msub><mi>t</mi><mtext>calc</mtext></msub></math></span>) of 212 multidimensional objects (parallelepipeds, rectangles, and finite cylinders) were then compared with the experimental freezing times (<span><math><mrow><msub><mi>t</mi><mtext>exper</mtext></msub><mrow><mo>)</mo></mrow></mrow></math></span>. The calculations yielded the following parameters for all 212 objects: minimum error <span><math><mrow><msub><mi>E</mi><mtext>min</mtext></msub><mo>=</mo><mo>−</mo><mn>3.9</mn><mo>%</mo></mrow></math></span>, mean error <span><math><mrow><msub><mi>E</mi><mtext>mean</mtext></msub><mo>=</mo><mn>0.2</mn><mo>%</mo></mrow></math></span>, maximum error <span><math><mrow><msub><mi>E</mi><mtext>max</mtext></msub><mo>=</mo><mn>5.0</mn><mo>%</mo></mrow></math></span>, standard deviation <span><math><mrow><msub><mi>σ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>1.4</mn><mo>%</mo></mrow></math></span>, and mean absolute error <span><math><mrow><msub><mi>E</mi><mtext>abs</mtext></msub><mo>=</mo><mn>1.1</mn><mo>%</mo></mrow></math></span>. The freezing times (<span><math><msub><mi>t</mi><mtext>calc</mtext></msub></math></span>) of 100 multidimensional objects (parallelepipeds and rectangles) were then compared with the freezing times of computational experiments (computational simulation) obtained from the literature using the finite element method (<span><math><mrow><msub><mi>t</mi><mtext>comput</mtext></msub><mrow><mo>)</mo></mrow></mrow></math></span>. The calculations yielded the following parameters for all 100 objects: <span><math><mrow><msub><mi>E</mi><mtext>min</mtext></msub><mo>=</mo><mo>−</mo><mn>2.8</mn><mo>%</mo></mrow></math></span>, <span><math><mrow><msub><mi>E</mi><mtext>mean</mtext></msub><mo>=</mo><mn>0.1</mn><mo>%</mo></mrow></math></span>, <span><math><mrow><msub><mi>E</mi><mtext>max</mtext></msub><mo>=</mo><mn>3.7</mn><mo>%</mo></mrow></math></span>, <span><math><mrow><msub><mi>σ</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mn>1.4</mn><mo>%</mo></mrow></math></span>, and <span><math><mrow><msub><mi>E</mi><mtext>abs</mtext></msub><mo>=</mo><mn>1.1</mn><mo>%</mo></mrow></math></span>.</p></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724002214\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002214","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种利用伪一维方法计算多维物体凝固时间的方法。例如,以空间网格Δx=Lx/(n-1)(其中 n=m)和Δy=ΔxLy/Lx 为参考,可从二维热传导方程模拟 (x,y,t) 矩形的温度,从而得到伪一维温度 T(x,t)。该程序可用于计算选定点(如物体中心)的凝固时间 (tcalc)。针对所提出的模型,我们开发了一个运行时间与一维问题类似的计算机程序。然后将 212 个多维物体(平行四边形、矩形和有限圆柱体)的凝固时间(tcalc)与实验凝固时间(texper)进行了比较。计算得出所有 212 个物体的参数如下:最小误差 Emin=-3.9%,平均误差 Emean=0.2%,最大误差 Emax=5.0%,标准偏差 σn-1=1.4%,平均绝对误差 Eabs=1.1%。然后将 100 个多维物体(平行四边形和矩形)的凝固时间(tcalc)与使用有限元方法从文献中获得的计算实验(计算模拟)的凝固时间(tcomput)进行比较。计算得出所有 100 个物体的参数如下:Emin=-2.8%,Emean=0.1%,Emax=3.7%,σn-1=1.4%,Eabs=1.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multidimensional freezing time using a pseudo-one-dimensional method

This study presents a method to calculate the freezing time of multidimensional objects using a pseudo-one-dimensional method. For example, the temperature of a rectangle in (x,y,t) can be simulated from the two-dimensional heat conduction equation to obtain a pseudo-one-dimensional temperature T(x,t), using the space grid Δx=Lx/(n1) (where n=m) and Δy=ΔxLy/Lx as references. This procedure can be used to calculate the freezing time (tcalc) at a selected point, such as the center of an object. A computer program with a runtime similar to that of a one-dimensional problem has been developed for the proposed model. The freezing times (tcalc) of 212 multidimensional objects (parallelepipeds, rectangles, and finite cylinders) were then compared with the experimental freezing times (texper). The calculations yielded the following parameters for all 212 objects: minimum error Emin=3.9%, mean error Emean=0.2%, maximum error Emax=5.0%, standard deviation σn1=1.4%, and mean absolute error Eabs=1.1%. The freezing times (tcalc) of 100 multidimensional objects (parallelepipeds and rectangles) were then compared with the freezing times of computational experiments (computational simulation) obtained from the literature using the finite element method (tcomput). The calculations yielded the following parameters for all 100 objects: Emin=2.8%, Emean=0.1%, Emax=3.7%, σn1=1.4%, and Eabs=1.1%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信