{"title":"优化新型羧甲基罗望子仁胶/锗纳米复合材料的抗菌功效和氨传感性能","authors":"Jagram Meena , Manoj Kumar , Akhtar Rasool , Fransiska Sri Herwahyu Krismastuti","doi":"10.1016/j.scowo.2024.100010","DOIUrl":null,"url":null,"abstract":"<div><p>Iron nanoparticles were synthesized utilizing Carboxymethyl tamarind kernel gum (CMTKG), which acted as both a reducing and stabilizing agent. Through an in situ co-precipitation method, CMTKG/FeO nanocomposites were synthesized, employing epichlorohydrin as a cross-linking agent. Characterization of the obtained CMTKG/FeO nanocomposites was conducted through various techniques including Scanning Electron Microscopy (SEM), Dynamic light scattering (DLS), Ultraviolet spectroscopy, Fourier transform infrared (FTIR), Thermal analysis (TGA), and X-ray diffraction analysis (XRD), revealing an average size of 60–90 nm. The application of these nanocomposites was explored in the sensing of ammonia in an aqueous medium at room temperature, demonstrating a noticeable change in the intensity of the surface plasmon resonance peak with increasing ammonia concentration, resulting in a shift from 313 nm to 331 nm. Additionally, the antimicrobial efficacy of the synthesized CMTKG/FeO nanocomposites was evaluated against urinary tract isolates including <em>Pseudomonas aeruginosa</em>, <em>E. coli,</em> and <em>Enterococcus faecalis</em>. Interestingly, the nanocomposites exhibited significant activity specifically against <em>Enterococcus faecalis</em>, manifesting a zone of inhibition measuring 12.4±0.5 mm.</p></div>","PeriodicalId":101197,"journal":{"name":"Sustainable Chemistry One World","volume":"3 ","pages":"Article 100010"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing antimicrobial efficacy and ammonia sensing in a novel carboxymethyl tamarind kernel gum/Fe nanocomposite\",\"authors\":\"Jagram Meena , Manoj Kumar , Akhtar Rasool , Fransiska Sri Herwahyu Krismastuti\",\"doi\":\"10.1016/j.scowo.2024.100010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Iron nanoparticles were synthesized utilizing Carboxymethyl tamarind kernel gum (CMTKG), which acted as both a reducing and stabilizing agent. Through an in situ co-precipitation method, CMTKG/FeO nanocomposites were synthesized, employing epichlorohydrin as a cross-linking agent. Characterization of the obtained CMTKG/FeO nanocomposites was conducted through various techniques including Scanning Electron Microscopy (SEM), Dynamic light scattering (DLS), Ultraviolet spectroscopy, Fourier transform infrared (FTIR), Thermal analysis (TGA), and X-ray diffraction analysis (XRD), revealing an average size of 60–90 nm. The application of these nanocomposites was explored in the sensing of ammonia in an aqueous medium at room temperature, demonstrating a noticeable change in the intensity of the surface plasmon resonance peak with increasing ammonia concentration, resulting in a shift from 313 nm to 331 nm. Additionally, the antimicrobial efficacy of the synthesized CMTKG/FeO nanocomposites was evaluated against urinary tract isolates including <em>Pseudomonas aeruginosa</em>, <em>E. coli,</em> and <em>Enterococcus faecalis</em>. Interestingly, the nanocomposites exhibited significant activity specifically against <em>Enterococcus faecalis</em>, manifesting a zone of inhibition measuring 12.4±0.5 mm.</p></div>\",\"PeriodicalId\":101197,\"journal\":{\"name\":\"Sustainable Chemistry One World\",\"volume\":\"3 \",\"pages\":\"Article 100010\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Chemistry One World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950357424000106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry One World","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950357424000106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing antimicrobial efficacy and ammonia sensing in a novel carboxymethyl tamarind kernel gum/Fe nanocomposite
Iron nanoparticles were synthesized utilizing Carboxymethyl tamarind kernel gum (CMTKG), which acted as both a reducing and stabilizing agent. Through an in situ co-precipitation method, CMTKG/FeO nanocomposites were synthesized, employing epichlorohydrin as a cross-linking agent. Characterization of the obtained CMTKG/FeO nanocomposites was conducted through various techniques including Scanning Electron Microscopy (SEM), Dynamic light scattering (DLS), Ultraviolet spectroscopy, Fourier transform infrared (FTIR), Thermal analysis (TGA), and X-ray diffraction analysis (XRD), revealing an average size of 60–90 nm. The application of these nanocomposites was explored in the sensing of ammonia in an aqueous medium at room temperature, demonstrating a noticeable change in the intensity of the surface plasmon resonance peak with increasing ammonia concentration, resulting in a shift from 313 nm to 331 nm. Additionally, the antimicrobial efficacy of the synthesized CMTKG/FeO nanocomposites was evaluated against urinary tract isolates including Pseudomonas aeruginosa, E. coli, and Enterococcus faecalis. Interestingly, the nanocomposites exhibited significant activity specifically against Enterococcus faecalis, manifesting a zone of inhibition measuring 12.4±0.5 mm.