用于复位控制系统分析的比例图

IF 2.5 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Sebastiaan van den Eijnden , Thomas Chaffey , Tom Oomen , W.P.M.H. (Maurice) Heemels
{"title":"用于复位控制系统分析的比例图","authors":"Sebastiaan van den Eijnden ,&nbsp;Thomas Chaffey ,&nbsp;Tom Oomen ,&nbsp;W.P.M.H. (Maurice) Heemels","doi":"10.1016/j.ejcon.2024.101050","DOIUrl":null,"url":null,"abstract":"<div><div>Scaled graphs allow for graphical analysis of nonlinear systems, but are generally difficult to compute. The aim of this paper is to develop a method for approximating the scaled graph of reset controllers. A key ingredient in our approach is the generalized Kalman–Yakubovich–Popov lemma to determine <em>input specific</em> input–output properties of a reset controller in the time domain. By combining the obtained time domain properties to cover the full input space, an over-approximation of the scaled graph is constructed. Using this approximation, we establish a feedback interconnection result and provide connections to classical input–output analysis frameworks. Several examples show the relevance of the results for the analysis and design of reset control systems.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"80 ","pages":"Article 101050"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaled graphs for reset control system analysis\",\"authors\":\"Sebastiaan van den Eijnden ,&nbsp;Thomas Chaffey ,&nbsp;Tom Oomen ,&nbsp;W.P.M.H. (Maurice) Heemels\",\"doi\":\"10.1016/j.ejcon.2024.101050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Scaled graphs allow for graphical analysis of nonlinear systems, but are generally difficult to compute. The aim of this paper is to develop a method for approximating the scaled graph of reset controllers. A key ingredient in our approach is the generalized Kalman–Yakubovich–Popov lemma to determine <em>input specific</em> input–output properties of a reset controller in the time domain. By combining the obtained time domain properties to cover the full input space, an over-approximation of the scaled graph is constructed. Using this approximation, we establish a feedback interconnection result and provide connections to classical input–output analysis frameworks. Several examples show the relevance of the results for the analysis and design of reset control systems.</div></div>\",\"PeriodicalId\":50489,\"journal\":{\"name\":\"European Journal of Control\",\"volume\":\"80 \",\"pages\":\"Article 101050\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0947358024001109\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001109","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

缩放图可以对非线性系统进行图形分析,但通常难以计算。本文旨在开发一种近似复位控制器缩放图的方法。我们方法的一个关键要素是广义卡尔曼-雅库博维奇-波波夫定理,用于确定复位控制器在时域中的特定输入输出属性。通过结合所获得的时域属性以覆盖整个输入空间,我们构建了一个比例图的过度近似值。利用这个近似值,我们建立了反馈互连结果,并提供了与经典输入输出分析框架的联系。几个例子显示了这些结果与复位控制系统分析和设计的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaled graphs for reset control system analysis
Scaled graphs allow for graphical analysis of nonlinear systems, but are generally difficult to compute. The aim of this paper is to develop a method for approximating the scaled graph of reset controllers. A key ingredient in our approach is the generalized Kalman–Yakubovich–Popov lemma to determine input specific input–output properties of a reset controller in the time domain. By combining the obtained time domain properties to cover the full input space, an over-approximation of the scaled graph is constructed. Using this approximation, we establish a feedback interconnection result and provide connections to classical input–output analysis frameworks. Several examples show the relevance of the results for the analysis and design of reset control systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Control
European Journal of Control 工程技术-自动化与控制系统
CiteScore
5.80
自引率
5.90%
发文量
131
审稿时长
1 months
期刊介绍: The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field. The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering. The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications. Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results. The design and implementation of a successful control system requires the use of a range of techniques: Modelling Robustness Analysis Identification Optimization Control Law Design Numerical analysis Fault Detection, and so on.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信