在近岸波浪过程混合模型中引入双峰海况

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
Alba Ricondo, Laura Cagigal, Beatriz Pérez-Díaz, Fernando J. Méndez
{"title":"在近岸波浪过程混合模型中引入双峰海况","authors":"Alba Ricondo,&nbsp;Laura Cagigal,&nbsp;Beatriz Pérez-Díaz,&nbsp;Fernando J. Méndez","doi":"10.1016/j.coastaleng.2024.104556","DOIUrl":null,"url":null,"abstract":"<div><p>HySwash has been recently developed as a fast and effective hybrid method to predict nearshore wave processes under unimodal wave conditions. However, global wave climates, and especially those in the tropical regions where coral reefs are hosted, are usually exposed to multiple incoming wave systems, resulting in several energy peaks corresponding to coexisting swells and wind seas. Moreover, although the full distribution of wave runup can have a significant impact on the assessment of vulnerable low-lying tropical regions, predictive models of flooding usually synthesize wave runups to an extreme percentile value, overlooking its full distribution. To enhance the capabilities of HySwash, in the present work, the inclusion of bimodality, as well as the prediction of the complete wave runup distribution is presented. This involves adapting the sampling, selection, and interpolation algorithms together with the hydrodynamic modeling that constitutes the original HySwash methodology. The positive mathematical validation reinforces the applicability of HySwash for a variety of coastal applications. Furthermore, a comparison is conducted between extreme wave runups induced by bimodal sea states and unimodal sea states, providing insights into the impact of multimodality on wave runup extremes.</p></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"192 ","pages":"Article 104556"},"PeriodicalIF":4.2000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Introducing bimodal sea-states in a hybrid model for nearshore wave processes\",\"authors\":\"Alba Ricondo,&nbsp;Laura Cagigal,&nbsp;Beatriz Pérez-Díaz,&nbsp;Fernando J. Méndez\",\"doi\":\"10.1016/j.coastaleng.2024.104556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>HySwash has been recently developed as a fast and effective hybrid method to predict nearshore wave processes under unimodal wave conditions. However, global wave climates, and especially those in the tropical regions where coral reefs are hosted, are usually exposed to multiple incoming wave systems, resulting in several energy peaks corresponding to coexisting swells and wind seas. Moreover, although the full distribution of wave runup can have a significant impact on the assessment of vulnerable low-lying tropical regions, predictive models of flooding usually synthesize wave runups to an extreme percentile value, overlooking its full distribution. To enhance the capabilities of HySwash, in the present work, the inclusion of bimodality, as well as the prediction of the complete wave runup distribution is presented. This involves adapting the sampling, selection, and interpolation algorithms together with the hydrodynamic modeling that constitutes the original HySwash methodology. The positive mathematical validation reinforces the applicability of HySwash for a variety of coastal applications. Furthermore, a comparison is conducted between extreme wave runups induced by bimodal sea states and unimodal sea states, providing insights into the impact of multimodality on wave runup extremes.</p></div>\",\"PeriodicalId\":50996,\"journal\":{\"name\":\"Coastal Engineering\",\"volume\":\"192 \",\"pages\":\"Article 104556\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378383924001042\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383924001042","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

HySwash 是最近开发的一种快速有效的混合方法,用于预测单模波浪条件下的近岸波浪过程。然而,全球的波浪气候,尤其是珊瑚礁所在的热带地区,通常会受到多种波浪系统的影响,从而产生多个能量峰值,与同时存在的涌浪和风海相对应。此外,尽管波浪上升的全面分布对评估脆弱的低洼热带地区有重大影响,但洪水预测模型通常将波浪上升综合为极端百分位值,忽略了波浪上升的全面分布。为了增强 HySwash 的功能,本研究将双峰性纳入其中,并预测完整的波浪起伏分布。这涉及到对构成原始 HySwash 方法的采样、选择和插值算法以及流体力学建模进行调整。积极的数学验证加强了 HySwash 在各种沿岸应用中的适用性。此外,还对双模态海况和单模态海况引起的极端波浪上升进行了比较,以深入了解多模态对极端波浪上升的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Introducing bimodal sea-states in a hybrid model for nearshore wave processes

HySwash has been recently developed as a fast and effective hybrid method to predict nearshore wave processes under unimodal wave conditions. However, global wave climates, and especially those in the tropical regions where coral reefs are hosted, are usually exposed to multiple incoming wave systems, resulting in several energy peaks corresponding to coexisting swells and wind seas. Moreover, although the full distribution of wave runup can have a significant impact on the assessment of vulnerable low-lying tropical regions, predictive models of flooding usually synthesize wave runups to an extreme percentile value, overlooking its full distribution. To enhance the capabilities of HySwash, in the present work, the inclusion of bimodality, as well as the prediction of the complete wave runup distribution is presented. This involves adapting the sampling, selection, and interpolation algorithms together with the hydrodynamic modeling that constitutes the original HySwash methodology. The positive mathematical validation reinforces the applicability of HySwash for a variety of coastal applications. Furthermore, a comparison is conducted between extreme wave runups induced by bimodal sea states and unimodal sea states, providing insights into the impact of multimodality on wave runup extremes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信