Wenli Wang , Gangrong Qu , Caiqin Song , Youran Ge , Yuhan Liu
{"title":"用共轭梯度最小二乘法对图像复原中的大规模离散失当问题进行提霍诺夫正则化处理","authors":"Wenli Wang , Gangrong Qu , Caiqin Song , Youran Ge , Yuhan Liu","doi":"10.1016/j.apnum.2024.06.010","DOIUrl":null,"url":null,"abstract":"<div><p>Image restoration is a large-scale discrete ill-posed problem, which can be transformed into a Tikhonov regularization problem that can approximate the original image. Kronecker product approximation is introduced into the Tikhonov regularization problem to produce an alternative problem of solving the generalized Sylvester matrix equation, reducing the scale of the image restoration problem. This paper considers solving this alternative problem by applying the conjugate gradient least squares (CGLS) method which has been demonstrated to be efficient and concise. The convergence of the CGLS method is analyzed, and it is demonstrated that the CGLS method converges to the least squares solution within the finite number of iteration steps. The effectiveness and superiority of the CGLS method are verified by numerical tests.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tikhonov regularization with conjugate gradient least squares method for large-scale discrete ill-posed problem in image restoration\",\"authors\":\"Wenli Wang , Gangrong Qu , Caiqin Song , Youran Ge , Yuhan Liu\",\"doi\":\"10.1016/j.apnum.2024.06.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Image restoration is a large-scale discrete ill-posed problem, which can be transformed into a Tikhonov regularization problem that can approximate the original image. Kronecker product approximation is introduced into the Tikhonov regularization problem to produce an alternative problem of solving the generalized Sylvester matrix equation, reducing the scale of the image restoration problem. This paper considers solving this alternative problem by applying the conjugate gradient least squares (CGLS) method which has been demonstrated to be efficient and concise. The convergence of the CGLS method is analyzed, and it is demonstrated that the CGLS method converges to the least squares solution within the finite number of iteration steps. The effectiveness and superiority of the CGLS method are verified by numerical tests.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Tikhonov regularization with conjugate gradient least squares method for large-scale discrete ill-posed problem in image restoration
Image restoration is a large-scale discrete ill-posed problem, which can be transformed into a Tikhonov regularization problem that can approximate the original image. Kronecker product approximation is introduced into the Tikhonov regularization problem to produce an alternative problem of solving the generalized Sylvester matrix equation, reducing the scale of the image restoration problem. This paper considers solving this alternative problem by applying the conjugate gradient least squares (CGLS) method which has been demonstrated to be efficient and concise. The convergence of the CGLS method is analyzed, and it is demonstrated that the CGLS method converges to the least squares solution within the finite number of iteration steps. The effectiveness and superiority of the CGLS method are verified by numerical tests.