{"title":"使用单块或几块瓷砖在平面上创建 3D 纹理细分图案","authors":"Anooshe Rezaee Javan, Ahmed Abdelaal, Yi Min Xie","doi":"10.1016/j.foar.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>Tessellations have been widely used in architectural designs to create visually striking surfaces by repeating a small number of elements. While there has been extensive research on 2D tiling over the past 2000 years, this study focuses on the systematic development of a technique for the modular construction of 2D tiling with 3D texture surfaces using identical tiles, which is of great importance in architectural designs for cost-effective constructions through the mass production of repeating components. This study applies parametric geometrical modelling using Grasshopper scripting to generate a wide range of 3D reliefs on planar surfaces by repeating a single tile or a few different tiles. Based on the findings of this study, it is possible to arrange tiles with an identical 3D texture surface in multiple configurations, resulting in a range of 3D reliefs on tessellated surfaces that exhibit smooth transitions across adjacent tiles. A significant application of this technique is in producing stunning facades and other 3D surfaces using identical modules, offering affordable modular construction through repetition. The study also demonstrates the versatility of the technique by creating various attractive non-periodic 3D surfaces using triangular, square, hexagonal, or even non-regular tiles.</div></div>","PeriodicalId":51662,"journal":{"name":"Frontiers of Architectural Research","volume":"13 6","pages":"Pages 1435-1446"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creating 3D texture tessellation on planar surface using a single tile or a few tiles\",\"authors\":\"Anooshe Rezaee Javan, Ahmed Abdelaal, Yi Min Xie\",\"doi\":\"10.1016/j.foar.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tessellations have been widely used in architectural designs to create visually striking surfaces by repeating a small number of elements. While there has been extensive research on 2D tiling over the past 2000 years, this study focuses on the systematic development of a technique for the modular construction of 2D tiling with 3D texture surfaces using identical tiles, which is of great importance in architectural designs for cost-effective constructions through the mass production of repeating components. This study applies parametric geometrical modelling using Grasshopper scripting to generate a wide range of 3D reliefs on planar surfaces by repeating a single tile or a few different tiles. Based on the findings of this study, it is possible to arrange tiles with an identical 3D texture surface in multiple configurations, resulting in a range of 3D reliefs on tessellated surfaces that exhibit smooth transitions across adjacent tiles. A significant application of this technique is in producing stunning facades and other 3D surfaces using identical modules, offering affordable modular construction through repetition. The study also demonstrates the versatility of the technique by creating various attractive non-periodic 3D surfaces using triangular, square, hexagonal, or even non-regular tiles.</div></div>\",\"PeriodicalId\":51662,\"journal\":{\"name\":\"Frontiers of Architectural Research\",\"volume\":\"13 6\",\"pages\":\"Pages 1435-1446\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Architectural Research\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095263524000736\",\"RegionNum\":1,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Architectural Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095263524000736","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
Creating 3D texture tessellation on planar surface using a single tile or a few tiles
Tessellations have been widely used in architectural designs to create visually striking surfaces by repeating a small number of elements. While there has been extensive research on 2D tiling over the past 2000 years, this study focuses on the systematic development of a technique for the modular construction of 2D tiling with 3D texture surfaces using identical tiles, which is of great importance in architectural designs for cost-effective constructions through the mass production of repeating components. This study applies parametric geometrical modelling using Grasshopper scripting to generate a wide range of 3D reliefs on planar surfaces by repeating a single tile or a few different tiles. Based on the findings of this study, it is possible to arrange tiles with an identical 3D texture surface in multiple configurations, resulting in a range of 3D reliefs on tessellated surfaces that exhibit smooth transitions across adjacent tiles. A significant application of this technique is in producing stunning facades and other 3D surfaces using identical modules, offering affordable modular construction through repetition. The study also demonstrates the versatility of the technique by creating various attractive non-periodic 3D surfaces using triangular, square, hexagonal, or even non-regular tiles.
期刊介绍:
Frontiers of Architectural Research is an international journal that publishes original research papers, review articles, and case studies to promote rapid communication and exchange among scholars, architects, and engineers. This journal introduces and reviews significant and pioneering achievements in the field of architecture research. Subject areas include the primary branches of architecture, such as architectural design and theory, architectural science and technology, urban planning, landscaping architecture, existing building renovation, and architectural heritage conservation. The journal encourages studies based on a rigorous scientific approach and state-of-the-art technology. All published papers reflect original research works and basic theories, models, computing, and design in architecture. High-quality papers addressing the social aspects of architecture are also welcome. This journal is strictly peer-reviewed and accepts only original manuscripts submitted in English.